Euclid preparation

Author:

,Leuzzi L.,Meneghetti M.ORCID,Angora G.ORCID,Metcalf R. B.ORCID,Moscardini L.ORCID,Rosati P.ORCID,Bergamini P.ORCID,Calura F.ORCID,Clément B.ORCID,Gavazzi R.ORCID,Gentile F.ORCID,Lochner M.ORCID,Grillo C.ORCID,Vernardos G.ORCID,Aghanim N.,Amara A.,Amendola L.ORCID,Auricchio N.ORCID,Bodendorf C.,Bonino D.,Branchini E.ORCID,Brescia M.ORCID,Brinchmann J.ORCID,Camera S.ORCID,Capobianco V.ORCID,Carbone C.ORCID,Carretero J.ORCID,Castellano M.ORCID,Cavuoti S.ORCID,Cimatti A.,Cledassou R.ORCID,Congedo G.ORCID,Conselice C. J.,Conversi L.ORCID,Copin Y.ORCID,Corcione L.ORCID,Courbin F.ORCID,Cropper M.ORCID,Da Silva A.ORCID,Degaudenzi H.ORCID,Dinis J.,Dubath F.ORCID,Dupac X.,Dusini S.,Farrens S.ORCID,Ferriol S.,Frailis M.ORCID,Franceschi E.ORCID,Fumana M.ORCID,Galeotta S.ORCID,Gillis B.ORCID,Giocoli C.ORCID,Grazian A.ORCID,Grupp F.,Guzzo L.ORCID,Haugan S. V. H.ORCID,Holmes W.,Hormuth F.,Hornstrup A.ORCID,Hudelot P.,Jahnke K.ORCID,Kümmel M.ORCID,Kermiche S.ORCID,Kiessling A.ORCID,Kitching T.ORCID,Kunz M.ORCID,Kurki-Suonio H.ORCID,Lilje P. B.ORCID,Lloro I.,Maiorano E.ORCID,Mansutti O.,Marggraf O.ORCID,Markovic K.ORCID,Marulli F.ORCID,Massey R.ORCID,Medinaceli E.ORCID,Mei S.ORCID,Melchior M.,Mellier Y.,Merlin E.ORCID,Meylan G.,Moresco M.ORCID,Munari E.ORCID,Niemi S.-M.,Nightingale J. W.ORCID,Nutma T.,Padilla C.ORCID,Paltani S.,Pasian F.,Pedersen K.,Pettorino V.,Pires S.ORCID,Polenta G.ORCID,Poncet M.,Raison F.ORCID,Renzi A.ORCID,Rhodes J.,Riccio G.,Romelli E.ORCID,Roncarelli M.ORCID,Rossetti E.,Saglia R.ORCID,Sapone D.ORCID,Sartoris B.,Schneider P.ORCID,Secroun A.ORCID,Seidel G.ORCID,Serrano S.ORCID,Sirignano C.ORCID,Sirri G.ORCID,Stanco L.ORCID,Tallada-Crespí P.ORCID,Taylor A. N.,Tereno I.,Toledo-Moreo R.ORCID,Torradeflot F.ORCID,Tutusaus I.ORCID,Valenziano L.ORCID,Vassallo T.ORCID,Wang Y.ORCID,Weller J.ORCID,Zamorani G.ORCID,Zoubian J.,Andreon S.ORCID,Bardelli S.ORCID,Boucaud A.ORCID,Bozzo E.ORCID,Colodro-Conde C.,Di Ferdinando D.,Farina M.,Farinelli R.,Graciá-Carpio J.,Keihänen E.ORCID,Lindholm V.ORCID,Maino D.,Mauri N.ORCID,Neissner C.,Schirmer M.ORCID,Scottez V.,Tenti M.ORCID,Tramacere A.ORCID,Veropalumbo A.ORCID,Zucca E.ORCID,Akrami Y.ORCID,Allevato V.ORCID,Baccigalupi C.ORCID,Ballardini M.,Bernardeau F.,Biviano A.ORCID,Borgani S.ORCID,Borlaff A. S.ORCID,Bretonnière H.ORCID,Burigana C.ORCID,Cabanac R.ORCID,Cappi A.,Carvalho C. S.,Casas S.ORCID,Castignani G.ORCID,Castro T.ORCID,Chambers K. C.ORCID,Cooray A. R.ORCID,Coupon J.,Courtois H. M.ORCID,Davini S.,de la Torre S.,De Lucia G.ORCID,Desprez G.,Di Domizio S.ORCID,Dole H.ORCID,Escartin Vigo J. A.,Escoffier S.ORCID,Ferrero I.ORCID,Gabarra L.,Ganga K.ORCID,Garcia-Bellido J.ORCID,Gaztanaga E.ORCID,George K.,Gozaliasl G.ORCID,Hildebrandt H.ORCID,Hook I.ORCID,Huertas-Company M.ORCID,Joachimi B.ORCID,Kajava J. J. E.ORCID,Kansal V.,Kirkpatrick C. C.,Legrand L.ORCID,Loureiro A.ORCID,Magliocchetti M.ORCID,Mainetti G.,Maoli R.,Martinelli M.ORCID,Martinet N.ORCID,Martins C. J. A. P.ORCID,Matthew S.,Maurin L.ORCID,Monaco P.ORCID,Morgante G.,Nadathur S.ORCID,Nucita A. A.,Patrizii L.,Popa V.,Porciani C.ORCID,Potter D.ORCID,Pöntinen M.ORCID,Reimberg P.ORCID,Sánchez A. G.ORCID,Sakr Z.ORCID,Schneider A.ORCID,Sereno M.ORCID,Simon P.,Spurio Mancini A.ORCID,Stadel J.ORCID,Steinwagner J.,Teyssier R.,Valiviita J.ORCID,Viel M.ORCID,Zinchenko I. A.,Domínguez Sánchez H.ORCID

Abstract

Forthcoming imaging surveys will increase the number of known galaxy-scale strong lenses by several orders of magnitude. For this to happen, images of billions of galaxies will have to be inspected to identify potential candidates. In this context, deep-learning techniques are particularly suitable for finding patterns in large data sets, and convolutional neural networks (CNNs) in particular can efficiently process large volumes of images. We assess and compare the performance of three network architectures in the classification of strong-lensing systems on the basis of their morphological characteristics. In particular, we implemented a classical CNN architecture, an inception network, and a residual network. We trained and tested our networks on different subsamples of a data set of 40 000 mock images whose characteristics were similar to those expected in the wide survey planned with the ESA mission Euclid, gradually including larger fractions of faint lenses. We also evaluated the importance of adding information about the color difference between the lens and source galaxies by repeating the same training on single- and multiband images. Our models find samples of clear lenses with ≳90% precision and completeness. Nevertheless, when lenses with fainter arcs are included in the training set, the performance of the three models deteriorates with accuracy values of ~0.87 to ~0.75, depending on the model. Specifically, the classical CNN and the inception network perform similarly in most of our tests, while the residual network generally produces worse results. Our analysis focuses on the application of CNNs to high-resolution space-like images, such as those that the Euclid telescope will deliver. Moreover, we investigated the optimal training strategy for this specific survey to fully exploit the scientific potential of the upcoming observations. We suggest that training the networks separately on lenses with different morphology might be needed to identify the faint arcs. We also tested the relevance of the color information for the detection of these systems, and we find that it does not yield a significant improvement. The accuracy ranges from ~0.89 to ~0.78 for the different models. The reason might be that the resolution of the Euclid telescope in the infrared bands is lower than that of the images in the visual band.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CSST strong lensing preparation: forecasting the galaxy–galaxy strong lensing population for the China space station telescope;Monthly Notices of the Royal Astronomical Society;2024-08-20

2. A model for galaxy–galaxy strong lensing statistics in surveys;Monthly Notices of the Royal Astronomical Society;2024-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3