Searching for strong galaxy-scale lenses in galaxy clusters with deep networks

Author:

Angora G.,Rosati P.,Meneghetti M.ORCID,Brescia M.ORCID,Mercurio A.ORCID,Grillo C.ORCID,Bergamini P.ORCID,Acebron A.ORCID,Caminha G.ORCID,Nonino M.ORCID,Tortorelli L.,Bazzanini L.ORCID,Vanzella E.

Abstract

Strong galaxy-scale lenses in galaxy clusters provide a unique tool with which to investigate the inner mass distribution of these clusters and the subhalo density profiles in the low-mass regime, which can be compared with predictions from ΛCDM cosmological simulations. We search for galaxy–galaxy strong-lensing systems in theHubbleSpace Telescope (HST) multi-band imaging of galaxy cluster cores by exploring the classification capabilities of deep learning techniques. Convolutional neural networks (CNNs) are trained utilising highly realistic simulations of galaxy-scale strong lenses injected into the HST cluster fields around cluster members (CLMs). To this aim, we take advantage of extensive spectroscopic information available in 16 clusters and accurate knowledge of the deflection fields in half of these from high-precision strong-lensing models. Using observationally based distributions, we sample the magnitudes (down toF814W = 29 AB), redshifts, and sizes of the background galaxy population. By placing these sources within the secondary caustics associated with the cluster galaxies, we build a sample of approximately 3000 strong galaxy–galaxy lenses, which preserve the full complexity of real multi-colour data and produce a wide diversity of strong-lensing configurations. We study two deep learning networks, processing a large sample of image cutouts, in three bands, acquired by HST Advanced Camera for Survey (ACS), and we quantify their classification performance using several standard metrics. We find that both networks achieve a very good trade-off between purity and completeness (85%–95%), as well as a good stability, with fluctuations within 2%–4%. We characterise the limited number of false negatives (FNs) and false positives (FPs) in terms of the physical properties of the background sources (magnitudes, colours, redshifts, and effective radii) and CLMs (Einstein radii and morphology). We also demonstrate the high degree of generalisation of the neural networks by applying our method to HST observations of 12 clusters with previously known galaxy-scale lensing systems.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Euclid preparation;Astronomy & Astrophysics;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3