Automation of finding strong gravitational lenses in the Kilo Degree Survey with U – DenseLens (DenseLens  + Segmentation)

Author:

N Bharath Chowdhary1ORCID,Koopmans Léon V E1ORCID,Valentijn Edwin A1,Kleijn Gijs Verdoes1,de Jong Jelte T A1,Napolitano Nicola234ORCID,Li Rui56ORCID,Tortora Crescenzo7ORCID,Busillo Valerio7ORCID,Dong Yue8

Affiliation:

1. Kapteyn Astronomical Institute, University of Groningen , PO Box 800, NL-9700 AV Groningen , the Netherlands

2. Department of Physics “E. Pancini”, University of Naples , Federico II, Via Cintia, 21, 80126 Naples , Italy

3. School of Physics and Astronomy, Sun Yat-sen University , Zhuhai Campus, 2 Daxue Road, Xiangzhou District, Zhuhai 519082 , China

4. CSST Science Center for Guangdong-Hong Kong-Macau Great Bay Area , Zhuhai 519082 , China

5. School of Astronomy and Space Science, University of Chinese Academy of Sciences , Beijing 100049 , China

6. National Astronomical Observatories, Chinese Academy of Sciences , 20A Datun Road, Chaoyang District, Beijing 100012 , China

7. INAF – Osservatorio Astronomico di Capodimonte , Via Moiariello 16, I-80131 Napoli , Italy

8. Xi’an Jiaotong-Liverpool University , Wuzhong District, Suzhou 215000 , China

Abstract

ABSTRACT In the context of upcoming large-scale surveys like Euclid, the necessity for the automation of strong lens detection is essential. While existing machine learning pipelines heavily rely on the classification probability (P), this study intends to address the importance of integrating additional metrics, such as Information Content (IC) and the number of pixels above the segmentation threshold ($\rm {\mathit{n}_{s}}$), to alleviate the false positive rate in unbalanced data-sets. In this work, we introduce a segmentation algorithm (U-Net) as a supplementary step in the established strong gravitational lens identification pipeline (Denselens), which primarily utilizes $\rm {\mathit{P}_{mean}}$ and $\rm {IC_{mean}}$ parameters for the detection and ranking. The results demonstrate that the inclusion of segmentation enables significant reduction of false positives by approximately 25 per cent in the final sample extracted from DenseLens, without compromising the identification of strong lenses. The main objective of this study is to automate the strong lens detection process by integrating these three metrics. To achieve this, a decision tree-based selection process is introduced, applied to the Kilo Degree Survey (KiDS) data. This process involves rank-ordering based on classification scores ($\rm {\mathit{P}_{mean}}$), filtering based on Information Content ($\rm {IC_{mean}}$), and segmentation score ($\rm {n_{s}}$). Additionally, the study presents 14 newly discovered strong lensing candidates identified by the U-Denselens network using the KiDS DR4 data.

Funder

Center for Information Technology

INAF

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3