An Efficient Strategy Based on Liquid–Liquid Extraction With Acid Condition and HSCCC for Rapid Enrichment and Preparative Separation of Three Caffeoylquinic Acid Isomers From Mulberry Leaves

Author:

Wang Li-Tao12,Gao Ming-Zhu2,Yang Qing1,Cui Qi2,Jian Yue1,Fan Xiao-Hong1,Yao Li-Ping2,Fu Yu-Jie123

Affiliation:

1. The College of Forestry, Beijing Forestry University, Beijing, People’s Republic of China

2. Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, People’s Republic of China

3. Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, People’s Republic of China

Abstract

Abstract Morus alba L. is a medicinal plant that contains a high amount of caffeoylquinic acids such as 3-caffeoylquinic acid (3-CQA), 5-caffeoylquinic acid (5-CQA) and 4-caffeoylquinic acid (4-CQA). This study aimed to establish a fast and efficient method for separating caffeoylquinic acids from mulberry leaves by using high-speed countercurrent chromatography coupled with macroporous resin. D101 resin showed better adsorption and desorption capacity for three caffeoylquinic acids among six macroporous resin adsorbents. The contents of 3-CQA, 5-CQA and 4-CQA reached for 4.77%, 18.95% and 9.84% through one cycle of D101 resin, which were 3.13-fold, 4.57-fold and 4.78-fold more than those in crude extracts, respectively. With a two-phase solvent system of ethyl acetate-water (1:1, V/V), >93% purity of target compounds were obtained in one cycle during 150 min with the recovery yields of 80.59%, 99.56% and 94.21% for 3-CQA, 5-CQA and 4-CQA, respectively. The structural identification of target compounds was carried out by ESI-MS, 1H NMR and 13C NMR spectra. The present result represented an easy and efficient separation strategy for the utilization of mulberry resource.

Funder

National Natural Science Fund

Forestry Industry Standard Revision Project

Wild Plant Protection and Management Project

Key R&D Program of Ministry of Science and Technology—Regulation of Key Characters of Mulberry

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

Subject

General Medicine,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3