Enhanced SVM–KPCA Method for Brain MR Image Classification

Author:

Neffati Syrine1,Ben Abdellafou Khaoula23,Taouali Okba4,Bouzrara Kais1

Affiliation:

1. Electrical Department, National Engineering School of Monastir, University of Monastir, 5019 Monastir, Tunisia

2. Department of Computer Science, Faculty of Computers and Information Technology, University of Tabuk, 71491 Tabuk, Saudi Arabia

3. University of Sousse, ISITCom, MARS Research Laboratory, LR17ES05, 4011, Hammam Sousse, Tunisia

4. Department of Computer Engineering, Faculty of Computers and Information Technology, University of Tabuk, 71491 Tabuk, Saudi Arabia

Abstract

Abstract Automated classification of magnetic resonance brain images (MRIs) is a hot topic in the field of medical and biomedical imaging. Various methods have been suggested recently to improve this technology. In this paper, to reduce the complexity involved in the medical images and to ameliorate the classification of MRIs, a novel 3D magnetic resonance (MR) brain image classifier using kernel principal component analysis (KPCA) and support vector machines (SVMs) is proposed. Experiments are carried out using A deep multiple kernel SVM (DMK-SVM) and a regular SVM. An algorithm entitled SVM–KPCA is put forward. Its main task is to classify a brain MRI as a normal brain image or as a pathological brain image. This algorithm, firstly, adopts the discrete wavelet transform technique to extract features from images. Secondly, KPCA is applied to decrease the dimensionality of features. SVM is then applied to the reduced data. A K-fold cross-validation strategy is used to avoid overfitting and to ameliorate the generalization of the SVM–KPCA algorithm. Three databases are used to validate the suggested SVM–KPCA method. Three conclusions are obtained from this work. First, KPCA is highly efficient in increasing the classifier’s performance compared with similar algorithms working on the proposed database. Second, the SVM–KPCA algorithm performs well in differentiating between two classes of medical images. Third, the approach is robust and might be utilized for other MRIs. This proposes a significant role for computer aided diagnosis analysis systems used for clinical practice.

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3