Author:
Ren Yuqian,Huang Chuanqi,Jiang Yushan,Wu Zhaoxia
Abstract
The design and optimization of a sinter mixture moisture controlling system usually require complex process mechanisms and time-consuming field experimental simulations. Based on BP neural networks, a new KPCA-GA optimization method is proposed to predict the mixture moisture content sequential values with time more accurately so as to derive the optimal water addition to meet industrial requirements. Firstly, the normalized input variables affecting the output were dimensionalized using kernel principal component analysis (KPCA), and the contribution rates of the factors affecting the water content were analyzed. Then, a BP neural network model was established. In order to get rid of the randomness of the initial threshold and weights on the prediction accuracy of the model, a genetic algorithm is proposed to preferentially find the optimal initial threshold and weights for the model. Then, statistical indicators, such as the root mean square error, were used to evaluate the fit and prediction accuracy of the training and test data sets, respectively. The available experimental data show that the KPCA-GA model has high fitting and prediction accuracy, and the method has significant advantages over traditional neural network modeling methods when dealing with data sets with complex nonlinear characteristics, such as those from the sintering process.
Funder
Science and Technology Project of Hebei Education Department
Subject
General Materials Science,Metals and Alloys
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献