Construction of power network security risk assessment model based on LSA-SVM algorithm in the background of smart grid

Author:

Qi Haojin,Zhu Wan,Ye Mingda,Hu Yichen,Wang Yong

Abstract

AbstractDue to theintricate and interdependent nature of the smart grid, it has encountered an increasing number of security threats in recent years. Currently, conventional security measures such as firewalls, intrusion detection, and malicious detection technologies offer specific protection based on their unique perspectives. However, as the types and concealment of attacksincrease, these measures struggle to detect them promptly and respond accordingly. In order to meet the social demand for the accuracy and computation speed of the power network security risk evaluation model, the study develops a fusion power network security risk evaluation algorithm by fusing the flash search algorithm with the support vector machine. This algorithm is then used as the foundation for building an improved power network security risk evaluation model based on the fusion algorithm.The study's improved algorithm's accuracy is 96.2%, which is higher than the accuracy of the other comparative algorithms; its error rate is 3.8%, which is lower than the error rate of the other comparative algorithms; and its loss function curve convergence is quicker than that of the other algorithms.The risk evaluation model's accuracy is 97.8%, which is higher than the accuracy of other comparative models; the error rate is 1.9%, which is lower than the error rate of other comparative models; the computing time of the improved power network security risk evaluation model is 4.4 s, which is lower than the computing time of other comparative models; and its expert score is high. These findings are supported by empirical analysis of the improved power network security risk evaluation model proposed in the study. According to the study's findings, the fusion algorithm and the upgraded power network security risk evaluation model outperform other approaches in terms of accuracy and processing speed. This allows the study's maintenance staff to better meet the needs of the community by assisting them in identifying potential security hazards early on and taking the necessary preventative and remedial action to ensure the power system's continued safe operation.

Funder

State Grid Zhejiang Electric Power Co., Ltd. project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3