Author:
Reddy Kamireddy Rasool,Dhuli Ravindra
Abstract
Over the last few years, brain tumor-related clinical cases have increased substantially, particularly in adults, due to environmental and genetic factors. If they are unidentified in the early stages, there is a risk of severe medical complications, including death. So, early diagnosis of brain tumors plays a vital role in treatment planning and improving a patient’s condition. There are different forms, properties, and treatments of brain tumors. Among them, manual identification and classification of brain tumors are complex, time-demanding, and sensitive to error. Based on these observations, we developed an automated methodology for detecting and classifying brain tumors using the magnetic resonance (MR) imaging modality. The proposed work includes three phases: pre-processing, classification, and segmentation. In the pre-processing, we started with the skull-stripping process through morphological and thresholding operations to eliminate non-brain matters such as skin, muscle, fat, and eyeballs. Then we employed image data augmentation to improve the model accuracy by minimizing the overfitting. Later in the classification phase, we developed a novel lightweight convolutional neural network (lightweight CNN) model to extract features from skull-free augmented brain MR images and then classify them as normal and abnormal. Finally, we obtained infected tumor regions from the brain MR images in the segmentation phase using a fast-linking modified spiking cortical model (FL-MSCM). Based on this sequence of operations, our framework achieved 99.58% classification accuracy and 95.7% of dice similarity coefficient (DSC). The experimental results illustrate the efficiency of the proposed framework and its appreciable performance compared to the existing techniques.
Reference50 articles.
1. Supervised learning based multimodal MRI brain tumour segmentation using texture features from supervoxels;Soltaninejad;Comput. Methods Programs Biomed.,2018
2. Brain tumour detection and ART classification technique in MR brain images using RPCA QT decomposition;Hagargi;Brain,2018
3. A comparative study of medical imaging techniques;Kasban;Int. J. Inf. Sci. Intell. Syst.,2015
4. A distinctive approach in brain tumor detection and classification using MRI;Amin;Pattern Recognit. Lett.,2017
5. State of the art survey on MRI brain tumor segmentation;Gordillo;Magn. Reson. Imaging,2013
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献