Spectral density of random graphs: convergence properties and application in model fitting

Author:

Santos Suzana de Siqueira1ORCID,Fujita André2ORCID,Matias Catherine3

Affiliation:

1. Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão, 1010, São Paulo - SP, 05508-090, Brazil and Escola de Matemática Aplicada, Fundação Getulio Vargas, Praia de Botafogo, 190, Rio de Janeiro - RJ, 22250-900, Brazil

2. Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão, 1010, São Paulo - SP, 05508-090, Brazil

3. Laboratoire de Probabilité, Statistique et Modélisation, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 4 Pl. Jussieu, 75252 Paris Cedex 05, France

Abstract

Abstract Random graph models are used to describe the complex structure of real-world networks in diverse fields of knowledge. Studying their behaviour and fitting properties are still critical challenges that, in general, require model-specific techniques. An important line of research is to develop generic methods able to fit and select the best model among a collection. Approaches based on spectral density (i.e. distribution of the graph adjacency matrix eigenvalues) appeal to that purpose: they apply to different random graph models. Also, they can benefit from the theoretical background of random matrix theory. This work investigates the convergence properties of model fitting procedures based on the graph spectral density and the corresponding cumulative distribution function. We also review the convergence of the spectral density for the most widely used random graph models. Moreover, we explore through simulations the limits of these graph spectral density convergence results, particularly in the case of the block model, where only partial results have been established. random graphs, spectral density, model fitting, model selection, convergence.

Funder

São Paulo Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,Control and Optimization,Management Science and Operations Research,Computer Networks and Communications

Reference53 articles.

1. Gene regulatory networks;Davidson,;Proc. Natl. Acad. Sci. USA,2005

2. Quantentheoretische Beiträge zum Benzolproblem;Hückel,;Zeitschrift für Physik,1931

3. Protein interaction networks;Pellegrini,;Expert Rev. Proteomics,2004

4. Exploring the brain network: a review on resting-state fMRI functional connectivity;van den Heuvel,;Eur. Neuropsychopharmacol.,2010

5. On random graphs;Erdős,;Publ. Math. Debrecen,1959

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Complex systems in ecology: a guided tour with large Lotka–Volterra models and random matrices;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-03

2. On the Limiting Spectral Distributions of Stochastic Block Models;Taiwanese Journal of Mathematics;2023-11-21

3. Extreme Value Statistics for Evolving Random Networks;Mathematics;2023-05-05

4. Spectral density-based clustering algorithms for complex networks;Frontiers in Neuroscience;2023-03-30

5. Efficient eigenvalue counts for tree-like networks;Journal of Complex Networks;2022-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3