Complex systems in ecology: a guided tour with large Lotka–Volterra models and random matrices

Author:

Akjouj Imane1,Barbier Matthieu2,Clenet Maxime3,Hachem Walid3,Maïda Mylène1,Massol François4,Najim Jamal3ORCID,Tran Viet Chi5

Affiliation:

1. Université de Lille, Lille, Hauts-de-France, France

2. CIRAD and Institut Natura e Teoria—Pirenèus, Surba, 09400, France

3. Université Gustave Eiffel and CNRS, Université Gustave Eiffel, Marne-La-Vallée, Île-de-France, France

4. CNRS, Université de Lille, INSERM, CHU, Institut Pasteur Lille, Lille, France

5. Université Gustave Eiffel, Marne-La-Vallée, Île-de-France, France

Abstract

Ecosystems represent archetypal complex dynamical systems, often modelled by coupled differential equations of the form d x i d t = x i ϕ i ( x 1 , , x N ) , where N represents the number of species and x i , the abundance of species i . Among these families of coupled differential equations, Lotka–Volterra (LV) equations, corresponding to ϕ i ( x 1 , , x N ) = r i x i + ( Γ x ) i , play a privileged role, as the LV model represents an acceptable trade-off between complexity and tractability. Here, r i is the intrinsic growth of species i and Γ stands for the interaction matrix: Γ i j represents the effect of species j over species i . For large N , estimating matrix Γ is often an overwhelming task and an alternative is to draw Γ at random, parameterizing its statistical distribution by a limited number of model features. Dealing with large random matrices, we naturally rely on random matrix theory (RMT). The aim of this review article is to present an overview of the work at the junction of theoretical ecology and large RMT. It is intended to an interdisciplinary audience spanning theoretical ecology, complex systems, statistical physics and mathematical biology.

Funder

Chaire Modélisation Mathématique et Biodiversité

ANR ECONET

CNRS

CEMPI

Labex BEZOUT

European Research Council

Publisher

The Royal Society

Reference156 articles.

1. Lotka AJ. 1925 Elements of physical biology. Baltimore, MD: Williams and Watkins.

2. Volterra V. 1931 Variations and fluctuations of the number of individuals in animal species living together. In Animal ecology (ed. RN Chapman) pp. 409–448. New York NY: McGraw-Hill.

3. Odum E, Barrett G. 1971 Fundamentals of ecology, vol. 3. Philadelphia, PA: Saunders Philadelphia.

4. Akjouj I Barbier M Clenet M Hachem W Maïda M Massol F Najim J Tran VC. 2024 Supplementary material/Complex systems in ecology: a guided tour with large Lotka-Volterra models and random matrices. Figshare. (doi:10.6084/m9.figshare.c.7099701)

5. The coevolution of predator—prey interactions : ESSS and Red Queen dynamics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stability of ecological systems: A theoretical review;Physics Reports;2024-10

2. Impact of a block structure on the Lotka-Volterra model;Peer Community Journal;2024-09-04

3. Heterogeneous mean-field analysis of the generalized Lotka–Volterra model on a network;Journal of Physics A: Mathematical and Theoretical;2024-08-13

4. Alternative cliques of coexisting species in complex ecosystems;Journal of Physics: Complexity;2024-06-01

5. Stock patterns in a class of delayed discrete-time population models;Discrete and Continuous Dynamical Systems - S;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3