Efficient eigenvalue counts for tree-like networks

Author:

Guzman Grover E C1,Stadler Peter F23,Fujita André1ORCID

Affiliation:

1. Institute of Mathematics and Statistics, University of São Paulo Department of Computer Science, , Rua do Matão, 1010, São Paulo - SP, 05508-090, Brazil

2. Leipzig University Bioinformatics Group, Department of Computer Science, , Leipzig, Germany, Interdisciplinary Center for Bioinformatics, Leipzig, Germany, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany, , Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany, Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany, Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Colombia and The Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA

3. Competence Center for Scalable Data Services and Solutions Dresden-Leipzig, Leipzig, Germany, Konrad Zuse School of Excellence in Embedded Composite AI Dresden/Leipzig (SECAI) Bioinformatics Group, Department of Computer Science, , Leipzig, Germany, Interdisciplinary Center for Bioinformatics, Leipzig, Germany, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany, , Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany, Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany, Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Colombia and The Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA

Abstract

AbstractEstimating the number of eigenvalues $\mu_{[a,b]}$ of a network’s adjacency matrix in a given interval $[a,b]$ is essential in several fields. The straightforward approach consists of calculating all the eigenvalues in $O(n^3)$ (where $n$ is the number of nodes in the network) and then counting the ones that belong to the interval $[a,b]$. Another approach is to use Sylvester’s law of inertia, which also requires $O(n^3)$. Although both methods provide the exact number of eigenvalues in $[a,b]$, their application for large networks is computationally infeasible. Sometimes, an approximation of $\mu_{[a,b]}$ is enough. In this case, Chebyshev’s method approximates $\mu_{[a,b]}$ in $O(|E|)$ (where $|E|$ is the number of edges). This study presents two alternatives to compute $\mu_{[a,b]}$ for locally tree-like networks: edge- and degree-based algorithms. The former presented a better accuracy than Chebyshev’s method. It runs in $O(d|E|)$, where $d$ is the number of iterations. The latter presented slightly lower accuracy but ran linearly ($O(n)$).

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,Control and Optimization,Management Science and Operations Research,Computer Networks and Communications

Reference50 articles.

1. Spectra of random networks with arbitrary degrees;Newman,;Physical Review E,2019

2. Power and centrality: a family of measures;Bonacich,;Am. J. Sociol.,1987

3. Optimization via low-rank approximation for community detection in networks;Le,;Ann. Stat.,2016

4. Computational drug repositioning using low-rank matrix approximation and randomized algorithms;Luo,;Bioinformatics,2018

5. Parallel clustered low-rank approximation of graphs and its application to link prediction;Sui,,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3