Spectral density-based clustering algorithms for complex networks

Author:

Ramos Taiane Coelho,Mourão-Miranda Janaina,Fujita André

Abstract

IntroductionClustering is usually the first exploratory analysis step in empirical data. When the data set comprises graphs, the most common approaches focus on clustering its vertices. In this work, we are interested in grouping networks with similar connectivity structures together instead of grouping vertices of the graph. We could apply this approach to functional brain networks (FBNs) for identifying subgroups of people presenting similar functional connectivity, such as studying a mental disorder. The main problem is that real-world networks present natural fluctuations, which we should consider.MethodsIn this context, spectral density is an exciting feature because graphs generated by different models present distinct spectral densities, thus presenting different connectivity structures. We introduce two clustering methods: k-means for graphs of the same size and gCEM, a model-based approach for graphs of different sizes. We evaluated their performance in toy models. Finally, we applied them to FBNs of monkeys under anesthesia and a dataset of chemical compounds.ResultsWe show that our methods work well in both toy models and real-world data. They present good results for clustering graphs presenting different connectivity structures even when they present the same number of edges, vertices, and degree of centrality.DiscussionWe recommend using k-means-based clustering for graphs when graphs present the same number of vertices and the gCEM method when graphs present a different number of vertices.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Wellcome Trust

Academy of Medical Sciences

Newton Fund

Fundação de Amparo à Pesquisa do Estado de São Paulo

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Alexander von Humboldt-Stiftung

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference46 articles.

1. “Automated Assessment of Loss of Consciousness Using Whisker And Paw Movements During Anesthetic Dosing in Head-Fixed Rodents,”;An;2018 40th Annual International Conference of the IEEE 477 Engineering in Medicine and Biology Society (EMBC),2018

2. Emergence of scaling in random networks;Barabási;Science,1999

3. Random Graphs

4. A classification em algorithm for clustering and two stochastic versions;Celeux;Comput. Stat. Data Anal,1992

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3