The 2019 Raikoke volcanic eruption – Part 2: Particle-phase dispersion and concurrent wildfire smoke emissions
-
Published:2022-03-07
Issue:5
Volume:22
Page:2975-2997
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Osborne Martin J., de Leeuw JohannesORCID, Witham Claire, Schmidt AnjaORCID, Beckett FrancesORCID, Kristiansen Nina, Buxmann JoelleORCID, Saint Cameron, Welton Ellsworth J., Fochesatto Javier, Gomes Ana R., Bundke UlrichORCID, Petzold AndreasORCID, Marenco FrancoORCID, Haywood Jim
Abstract
Abstract. Between 27 June and 14 July 2019 aerosol layers were observed by the United Kingdom (UK) Raman lidar network in the upper troposphere and lower stratosphere. The arrival of these aerosol layers in late June caused some concern within the London Volcanic Ash Advisory Centre (VAAC) as according to dispersion simulations the volcanic plume from the 21 June 2019 eruption of Raikoke was not expected over the UK until early July. Using dispersion simulations from the Met Office Numerical Atmospheric-dispersion Modelling Environment (NAME), and supporting evidence from satellite and in situ aircraft observations, we show that the early arrival of the stratospheric layers was not due to aerosols from the explosive eruption of the Raikoke volcano but due to biomass burning smoke aerosols associated with intense forest fires in Alberta, Canada, that occurred 4 d prior to the Raikoke eruption. We use the observations and model simulations to describe the dispersion of both the volcanic and forest fire aerosol clouds and estimate that the initial Raikoke ash aerosol cloud contained around 15 Tg of volcanic ash and that the forest fires produced around 0.2 Tg of biomass burning aerosol. The operational monitoring of volcanic aerosol clouds is a vital capability in terms of aviation safety and the synergy of NAME dispersion simulations, and lidar data with depolarising capabilities allowed scientists at the Met Office to interpret the various aerosol layers over the UK and attribute the material to their sources. The use of NAME allowed the identification of the observed stratospheric layers that reached the UK on 27 June as biomass burning aerosol, characterised by a particle linear depolarisation ratio of 9 %, whereas with the lidar alone the latter could have been identified as the early arrival of a volcanic ash–sulfate mixed aerosol cloud. In the case under study, given the low concentration estimates, the exact identification of the aerosol layers would have made little substantive difference to the decision-making process within the London VAAC. However, our work shows how the use of dispersion modelling together with multiple observation sources enabled us to create a more complete description of atmospheric aerosol loading.
Funder
Natural Environment Research Council
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference91 articles.
1. Adam, M., Buxmann, J., Freeman, N., Horseman, A., Salmon, C., Sugier, J., and
Bennett, R.: The UK Lidar-sunphotometer operational volcanic ash monitoring network,
EPJ Web Conf., 176, 09006,
https://doi.org/10.1051/epjconf/201817609006, 2018. a 2. Adam, M., Nicolae, D., Stachlewska, I. S., Papayannis, A., and Balis, D.: Biomass burning events measured by lidars in EARLINET – Part 1: Data analysis methodology, Atmos. Chem. Phys., 20, 13905–13927, https://doi.org/10.5194/acp-20-13905-2020, 2020. a, b 3. Alvarez, J. M., Vaughan, M. A., Hostetler, C. A., Hunt, W. H., and Winker,
D. M.: Calibration Technique for Polarization-Sensitive Lidars, J.
Atmos. Ocean. Tech., 23, 683–699, https://doi.org/10.1175/JTECH1872.1, 2006. a 4. Ansmann, A., Wandinger, U., Riebesell, M., Weitkamp, C., and Michaelis, W.:
Independent measurement of extinction and backscatter profiles in cirrus
clouds by using a combined Raman elastic-backscatter lidar, Appl. Optics, 31,
7113–7131, https://doi.org/10.1364/AO.31.007113, 1992. a 5. Ansmann, A., Tesche, M., Seifert, P., Groß, S., Freudenthaler, V., Apituley,
A., Wilson, K. M., Serikov, I., Linné, H., Heinold, B., Hiebsch, A.,
Schnell, F., Schmidt, J., Mattis, I., Wandinger, U., and Wiegner, M.: Ash and
fine-mode particle mass profiles from EARLINET-AERONET observations over
central Europe after the eruptions of the Eyjafjallajökull volcano in 2010,
J. Geophys. Res.-Atmos., 116, D00U02,
https://doi.org/10.1029/2010JD015567, 2011. a, b, c, d, e, f
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|