Biomass burning events measured by lidars in EARLINET – Part 1: Data analysis methodology

Author:

Adam Mariana,Nicolae Doina,Stachlewska Iwona S.ORCID,Papayannis AlexandrosORCID,Balis DimitrisORCID

Abstract

Abstract. The methodology of analysing the biomass burning events recorded in the database of the European Aerosol Research Lidar Network in the framework of the Aerosol, Clouds and Trace Gases Research Infrastructure is presented. The period of 2008–2017 was chosen to analyse all of the events stored in the database under the Forest Fire category for a total of 14 stations available. The data provided ranged from complete datasets (particle backscatter, extinction and linear depolarization ratio profiles) to single profiles (particle backscatter coefficient profile). Smoke layers geometry was evaluated and the mean optical properties within each layer were computed. The back-trajectory technique was used to double-check the source of all pollution layers. The biomass burning layers were identified by taking into account the presence of the fires along the back trajectory. The biomass burning events are analysed by the means of the intensive parameters. The analysis was structured in three directions: (I) common biomass burning source (fire) recorded by at least two stations, (II) long-range transport from North America, and (III) analysis over four geographical regions (south-eastern Europe, north-eastern Europe, central Europe, and south-western Europe). Based on back-trajectory calculations and fire locations, the lidar measurements can be labelled either as measurements of a “single fire” or “mixed fires” (case I), measurements of North American fires, or measurements of mixed North American and local fires (case II). The histogram of the fire locations reveals the smoke sources for each region. For each region, statistics on intensive parameters are performed. The source origin of the intensive parameters is categorized based on the continental origin of the air mass (European, African, Asian, North American, or a combination of them). The methodology presented here is meant to provide a perspective to explore a large number of lidar data and deliver novel approaches to analyse the intensive parameters based on the assigned biomass burning sources. A thorough consideration of all potential fire sources reveals that most of the time the lidar measurements characterize the smoke from a mixture of fires. A comprehensive discussion of all the results (based on the intensive parameters and the source locations) will be given in a companion paper submitted to the ACP EARLINET special issue.

Funder

European Space Agency

European Regional Development Fund

Ministerul Cercetării şi Inovării

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference61 articles.

1. Adam, M., Pahlow, M., Kovalev, V. A., Ondov, J. M., Parlange, M. B., and Nair, N.: Aerosol optical characterization by nephelometer and lidar: The Baltimore Supersite experiment during the Canadian forest fire smoke intrusion, J. Geophys. Res., 109, D16S02, https://doi.org/10.1029/2003JD004047, 2004.

2. Adam, M., Nicolae, D., Belegante, L., Stachlewska, I. S., Szczepanik, D., Mylonaki, M., Papanikolaou, C. A., Siomos, N., Voudouri, K. A., Apituley, A., Alados-Arboledas, L., Bravo-Aranda, J. A., Pietruczuk, A., Chaikovski, A., Sicard, M., Muñoz-Porcar, C., Mattis, I., Papagiannopoulos, N., Mona, L., Baars, H., Wandinger, U., Bortoli, D., Grigorov, I., Peshev, Z., and Antonescu, B.: Biomass burning measurements in EARLINET, ILRC29, S25-17, Hefei, China, 2019.

3. Adam, M., Nicolae, D., Belegante, L., Stachlewska, I. S., Janicka, L., Szczepanik, D., Mylonaki, M., Papanikolaou, C. A., Siomos, N., Voudouri, K. A., Alados-Arboledas, L., Bravo-Aranda, J. A., Apituley, A., Papagiannopoulos, N., Mona, L., Mattis, I., Chaikovsky, A., Sicard, M., Muñoz-Porcar, C., Pietruczuk, A., Bortoli, D., Baars, H., Grigorov, I., and Peshev, Z.: Biomass burning events measured by lidars in EARLINET. Part II. Results and discussions, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-647, in review, 2020.

4. Alonso-Blanco, E., Castro, A., Calvo, A. I., Pont, V., Mallet, M., and Fraile, R.: Wildfire smoke plumes transport under a subsidence inversion: Climate and health implications in a distant urban area, Sci. Total Environ., 619–620, 988–1002, https://doi.org/10.1016/j.scitotenv.2017.11.142, 2018.

5. Ansmann, A., Riebesell, M., Wandinger, U., Weitkamp, C., Voss, E., Lahmann, W., and Michaelis, W.: Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio, Appl. Phys., 55, 18–28, 1992.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3