A modelling approach for quantifying volcanic sulphur dioxide concentrations at flight altitudes and the potential hazard to aircraft occupants

Author:

Kristiansen N. I.,Witham C. S.,Beckett F. M.

Abstract

AbstractVolcanic eruptions can emit large quantities of sulphur dioxide (SO2) into the atmosphere, which can be harmful to people and the environment. Aircraft encounters with a volcanic SO2 cloud could represent a health hazard to crew and passengers onboard. In this study we have assessed concentration levels of volcanic SO2 in the atmosphere following eight historic eruptions and use four-dimensional dispersion model simulation data to calculate when and where the World Health Organisation (WHO) health protection guideline for SO2 of 500 μgm-3 over 10 minutes is exceeded. The time and area of exceedance varies and depends on the eruption characteristics: the amount, duration and height of the SO2 release. The WHO-based guideline value is exceeded for all historic eruptions considered. In several cases, the area delineated by the WHO-based guideline, here called the SO2 hazard area, can be considerably larger than the volcanic ash hazard area for the same eruption. SO2 hazard areas also often extend over a longer period of time compared to the equivalent ash advisories. For example, following the 2019 eruption of Raikoke, the SO2 hazard area reached up to 1.7 million km2 and the WHO-based guideline value was exceeded for about two weeks, while volcanic ash was considered hazardous to aviation for about five days. These results will help the aviation industry to better understand the potential risks to their passengers and crew from volcanic SO2, and aid in defining concentration thresholds for any potential volcanic SO2 forecasts for aviation.

Funder

UK Public Weather Service and the Civil Aviation Authority

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3