Interactive stratospheric aerosol models' response to different amounts and altitudes of SO2 injection during the 1991 Pinatubo eruption
-
Published:2023-01-19
Issue:2
Volume:23
Page:921-948
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Quaglia IlariaORCID, Timmreck ClaudiaORCID, Niemeier UlrikeORCID, Visioni DanieleORCID, Pitari Giovanni, Brodowsky Christina, Brühl Christoph, Dhomse Sandip S.ORCID, Franke HenningORCID, Laakso AntonORCID, Mann Graham W.ORCID, Rozanov EugeneORCID, Sukhodolov Timofei
Abstract
Abstract. A previous model intercomparison of the Tambora aerosol cloud has highlighted substantial differences among simulated volcanic aerosol properties in the pre-industrial stratosphere and has led to questions about the applicability of global aerosol models for large-magnitude explosive eruptions prior to the observational period.
Here, we compare the evolution of the stratospheric aerosol cloud following the well-observed June 1991 Mt. Pinatubo eruption simulated with six interactive stratospheric aerosol microphysics models to a range of observational data sets. Our primary focus is on the uncertainties regarding initial SO2 emission following the Pinatubo eruption, as prescribed in the Historical Eruptions SO2 Emission Assessment experiments (HErSEA), in the framework of the Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP). Six global models with interactive aerosol microphysics took part in this study: ECHAM6-SALSA, EMAC, ECHAM5-HAM, SOCOL-AERv2, ULAQ-CCM, and UM-UKCA. Model simulations are performed by varying the SO2 injection amount (ranging between 5 and 10 Tg S) and the altitude of injection (between 18–25 km). The comparisons show that all models consistently demonstrate faster reduction from the peak in sulfate mass burden in the tropical stratosphere. Most models also show a stronger transport towards the extratropics in the Northern Hemisphere, at the expense of the observed tropical confinement, suggesting a much weaker subtropical barrier in all the models, which results in a shorter e-folding time compared to the observations. Furthermore, simulations in which more than 5 Tg S in the form of SO2 is injected show an initial overestimation of the sulfate burden in the tropics and, in some models, in the Northern Hemisphere and a large surface area density a few months after the eruption compared to the values measured in the tropics and the in situ measurements over Laramie. This draws attention to the importance of including processes such as the ash injection for the removal of the initial SO2 and aerosol lofting through local heating.
Funder
Deutsche Forschungsgemeinschaft Deutsches Klimarechenzentrum Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung Ministry of Science and Higher Education of the Russian Federation Natural Environment Research Council National Centre for Atmospheric Science
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference123 articles.
1. Antuña, J. C., Robock, A., Stenchikov, G. L., Thomason, L. W., and Barnes,
J. E.: Lidar validation of SAGE II aerosol measurements after the 1991 Mount
Pinatubo eruption, J. Geophys. Res.-Atmos., 107, ACL3-1–ACL3-11, https://doi.org/10.1029/2001JD001441, 2002. a 2. Aquila, V., Oman, L. D., Stolarski, R. S., Colarco, P. R., and Newman, P. A.:
Dispersion of the volcanic sulfate cloud from a Mount Pinatubo-like
eruption: Dispersion Of A Mount Pinatubo Cloud, J. Geophys. Res.-Atmos., 117, D06216, https://doi.org/10.1029/2011JD016968, 2012. a, b, c 3. Archibald, A. T., O'Connor, F. M., Abraham, N. L., Archer-Nicholls, S., Chipperfield, M. P., Dalvi, M., Folberth, G. A., Dennison, F., Dhomse, S. S., Griffiths, P. T., Hardacre, C., Hewitt, A. J., Hill, R. S., Johnson, C. E., Keeble, J., Köhler, M. O., Morgenstern, O., Mulcahy, J. P., Ordóñez, C., Pope, R. J., Rumbold, S. T., Russo, M. R., Savage, N. H., Sellar, A., Stringer, M., Turnock, S. T., Wild, O., and Zeng, G.: Description and evaluation of the UKCA stratosphere–troposphere chemistry scheme (StratTrop vn 1.0) implemented in UKESM1, Geosci. Model Dev., 13, 1223–1266, https://doi.org/10.5194/gmd-13-1223-2020, 2020. a 4. Aubry, T. J., Engwell, S., Bonadonna, C., Carazzo, G., Scollo, S., Van Eaton,
A. R., Taylor, I. A., Jessop, D., Eychenne, J., Gouhier, M., Mastin, L. G.,
Wallace, K. L., Biass, S., Bursik, M., Grainger, R. G., Jellinek, A. M., and
Schmidt, A.: The Independent Volcanic Eruption Source Parameter
Archive (IVESPA, version 1.0): A new observational database to support
explosive eruptive column model validation and development, J.
Volcanol. Geoth. Res., 417, 107295,
https://doi.org/10.1016/j.jvolgeores.2021.107295, 2021. a 5. Ayris, P., Lee, A., Wilson, K., Kueppers, U., Dingwell, D., and Delmelle, P.:
SO2 sequestration in large volcanic eruptions: High-temperature
scavenging by tephra, Geochim. Cosmochim. Ac., 110, 58–69,
https://doi.org/10.1016/j.gca.2013.02.018, 2013.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|