Microphysical Simulation of the 2022 Hunga Volcano Eruption Using a Sectional Aerosol Model

Author:

Li Chenwei12,Peng Yifeng3,Asher Elizabeth45,Baron Alexandre A.56ORCID,Todt Michael567ORCID,Thornberry Troy D.6ORCID,Evan Stephanie8,Brioude Jerome8ORCID,Smale Penny9ORCID,Querel Richard9ORCID,Rosenlof Karen H.6ORCID,Zhou Luxi10,Xu Jingyuan11,Qie Kai11,Bian Jianchun11ORCID,Toon Owen B.12ORCID,Zhu Yunqian56,Yu Pengfei12ORCID

Affiliation:

1. Institute for Environmental and Climate Research College of Environment and Climate Jinan University Guangzhou China

2. Guangdong‐Hong Kong‐Macau Joint Laboratory of Collaborative Innovation for Environmental Quality Guangzhou China

3. College of Atmospheric Sciences Lanzhou University Lanzhou China

4. Global Monitoring Laboratory National Oceanic and Atmospheric Administration (NOAA) Boulder CO USA

5. Cooperative Institute for Research in Environmental Sciences (CIRES) University of Colorado Boulder CO USA

6. Chemical Sciences Laboratory National Oceanic and Atmospheric Administration (NOAA) Boulder CO USA

7. Finnish Meteorological Institute (FMI) Helsinki Finland

8. Laboratoire de l'Atmosphère et des Cyclones (LACy UMR 8105 CNRS Météo‐France Université de La Réunion) Saint‐Denis France

9. National Institute of Water and Atmospheric Research (NIWA) Lauder New Zealand

10. Guangzhou Institute of Tropical and Marine Meteorology Meteorological Administration Guangzhou China

11. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry Institute of Atmospheric Physics Chinese Academy of Sciences Beijing China

12. Department of Atmospheric and Oceanic Sciences and Laboratory for Atmospheric and Space Physics University of Colorado Boulder CO USA

Abstract

AbstractApproximately 150 Tg of water vapor and 0.42 Tg of sulfur dioxide were injected directly into the stratosphere by the January 2022 Hunga volcanic eruption, which represents the largest water vapor injection in the satellite era. A comparison of numerical simulations to balloon‐borne and satellite observations of the water‐rich plume suggests that particle coagulation contributed to the Hunga aerosol's effective dry radius increase from 0.2 μm in February to around 0.4 μm in March. Our model suggests that the stratospheric aerosol effective radius is persistently perturbed for years by moderate and large‐magnitude volcanic events, whereas extreme wildfire events show limited impact on the stratospheric background particle size. Our analysis further suggests that both the particle optical efficiency and the aerosols' stratospheric lifetime explain Hunga's unusually large aerosol optical depth per unit of the SO2 injection, as compared with the Pinatubo eruption.

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3