Practice and philosophy of climate model tuning across six US modeling centers
-
Published:2017-09-01
Issue:9
Volume:10
Page:3207-3223
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Schmidt Gavin A.ORCID, Bader DavidORCID, Donner Leo J.ORCID, Elsaesser Gregory S.ORCID, Golaz Jean-ChristopheORCID, Hannay Cecile, Molod Andrea, Neale Richard B., Saha Suranjana
Abstract
Abstract. Model calibration (or tuning) is a necessary part of developing and testing coupled ocean–atmosphere climate models regardless of their main scientific purpose. There is an increasing recognition that this process needs to become more transparent for both users of climate model output and other developers. Knowing how and why climate models are tuned and which targets are used is essential to avoiding possible misattributions of skillful predictions to data accommodation and vice versa. This paper describes the approach and practice of model tuning for the six major US climate modeling centers. While details differ among groups in terms of scientific missions, tuning targets, and tunable parameters, there is a core commonality of approaches. However, practices differ significantly on some key aspects, in particular, in the use of initialized forecast analyses as a tool, the explicit use of the historical transient record, and the use of the present-day radiative imbalance vs. the implied balance in the preindustrial era as a target.
Publisher
Copernicus GmbH
Reference88 articles.
1. Alexander, M. and Dunkerton, T.: A spectral parameterization of mean-flow forcing due to breaking gravity waves, J. Atmos. Sci., 56, 4167–4182, 1999. 2. Allan, R. P., Liu, C., Loeb, N. G., Palmer, M. D., Roberts, M., Smith, D., and Vidale, P.-L.: Changes in global net radiative imbalance 1985–2012, Geophys. Res. Lett., 41, 5588–5597, https://doi.org/10.1002/2014gl060962, 2014. 3. Annan, J. D. and Hargreaves, J. C.: On the meaning of independence in climate science, Earth Syst. Dynam., 8, 211–224, https://doi.org/10.5194/esd-8-211-2017, 2017. 4. Benedict, J., Maloney, E., Sobel, A., Frierson, D., and Donner, L.: Tropical intraseasonal variability in Version 3 of the GFDL atmosphere model, J. Climate, 26, 426–449, https://doi.org/10.1175/JCLI-D-12-00103.1, 2013. 5. Bi, D., Dix, M., Marsland, S., O'Farrell, S., Rashid, H., Uotila, P., Hirst, A., Kowalczyk, E., Golebiewski, M., Sullivan, A., Yan, H., Hannah, N., Franklin, C., Sun, Z., Vohralik, P., Watterson, I., Zhou, X., Fiedler, R., Collier, M., Ma, Y., Noonan, J., Stevens, L., Uhe, P., Zhu, H., Griffies, S., Hill, R., Harris, C., and Puri, K.: The ACCESS coupled model: description, control climate and evaluation, Aust. Met. Oceanogr. J., 63, 41–64, 2013.
Cited by
101 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|