Tropical Intraseasonal Variability in Version 3 of the GFDL Atmosphere Model

Author:

Benedict James J.1,Maloney Eric D.1,Sobel Adam H.2,Frierson Dargan M.3,Donner Leo J.4

Affiliation:

1. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

2. Department of Applied Mathematics, Department of Earth and Environmental Sciences, and Lamont-Doherty Earth Observatory, Columbia University, New York, New York

3. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

4. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Abstract

Abstract Tropical intraseasonal variability is examined in version 3 of the Geophysical Fluid Dynamics Laboratory Atmosphere Model (AM3). In contrast to its predecessor AM2, AM3 uses a new treatment of deep and shallow cumulus convection and mesoscale clouds. The AM3 cumulus parameterization is a mass-flux-based scheme but also, unlike that in AM2, incorporates subgrid-scale vertical velocities; these play a key role in cumulus microphysical processes. The AM3 convection scheme allows multiphase water substance produced in deep cumuli to be transported directly into mesoscale clouds, which strongly influence large-scale moisture and radiation fields. The authors examine four AM3 simulations using a control model and three versions with different modifications to the deep convection scheme. In the control AM3, using a convective closure based on CAPE relaxation, both MJO and Kelvin waves are weak relative to those in observations. By modifying the convective closure and trigger assumptions to inhibit deep cumuli, AM3 produces reasonable intraseasonal variability but a degraded mean state. MJO-like disturbances in the modified AM3 propagate eastward at roughly the observed speed in the Indian Ocean but up to 2 times the observed speed in the west Pacific Ocean. Distinct differences in intraseasonal convective organization and propagation exist among the modified AM3 versions. Differences in vertical diabatic heating profiles associated with the MJO are also found. The two AM3 versions with the strongest intraseasonal signals have a more prominent “bottom heavy” heating profile leading the disturbance center and “top heavy” heating profile following the disturbance. The more realistic heating structures are associated with an improved depiction of moisture convergence and intraseasonal convective organization in AM3.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference82 articles.

1. The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present);Adler;J. Hydrometeor.,2003

2. The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations;Anderson;J. Climate,2004

3. Interaction of a cumulus cloud ensemble with the large-scale environment, Part I;Arakawa;J. Atmos. Sci.,1974

4. Observed characteristics of the MJO relative to maximum rainfall;Benedict;J. Atmos. Sci.,2007

5. Berrisford, P., D.Dee, K.Fielding, M.Fuentes, P.Kallberg, S.Kobayashi, and S.Uppala, 2009: The ERA-Interim archive. ECMWF Tech. Rep. 1, 16 pp. [Available online at http://www.ecmwf.int/publications/library/do/references/show?id=89203.]

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3