Physically‐Informed Super‐Resolution Downscaling of Antarctic Surface Melt

Author:

de Roda Husman Sophie1ORCID,Hu Zhongyang2ORCID,van Tiggelen Maurice2ORCID,Dell Rebecca3ORCID,Bolibar Jordi14ORCID,Lhermitte Stef15ORCID,Wouters Bert1,Munneke Peter Kuipers2ORCID

Affiliation:

1. Department of Geoscience & Remote Sensing Delft University of Technology Delft The Netherlands

2. Institute for Marine and Atmospheric Research Utrecht Utrecht University Utrecht The Netherlands

3. Scott Polar Research Institute (SPRI) University of Cambridge Cambridge UK

4. Institut des Géosciences de l’Environnement Université Grenoble Alpes, CNRS, IRD, G‐INP Grenoble France

5. Department of Earth & Environmental Sciences Catholic University of Leuven Leuven Belgium

Abstract

AbstractBecause Antarctic surface melt is mostly driven by local processes, its simulation necessitates high‐resolution regional climate models (RCMs). However, the current horizontal resolution of RCMs (≈25–30 km) is inadequate for capturing small‐scale melt processes. To address this limitation, we present SUPREME (SUPer‐REsolution‐based Melt Estimation over Antarctica), a deep learning method to downscale surface melt to 5.5 km resolution using a physically‐informed super‐resolution model. The physical information integrated into the model originates from observations tied to surface melt, specifically remote sensing‐derived albedo and elevation. These remote sensing data, in addition to a Regional Atmospheric Climate Model (RACMO) run at 27 km resolution, account for the diverse drivers of surface melt across Antarctica, facilitating effective generalization beyond the training region of the Antarctic Peninsula. A comparison of SUPREME with a dynamically downscaled RACMO run at 5.5 km over the Antarctic Peninsula shows high accuracy, with average yearly RMSE and bias of 5.5 mm w.e. yr−1 and 4.5 mm w.e. yr−1, respectively. Validation at five automatic weather stations reveals SUPREME's marked improvement with substantially lower average RMSE (81 mm w.e.) compared to RACMO 27 km (129 mm w.e.). Beyond the training region, SUPREME aligns more closely with remote sensing products associated with surface melt than super‐resolution models lacking physical constraints. While further validation of SUPREME is needed, our study highlights the potential of super‐resolution techniques with physical constraints for high‐resolution surface melt monitoring in Antarctica, providing insights into the impacts of localized melting on processes affecting ice shelf integrity such as hydrofracturing.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3