Lightning NO<sub>2</sub> simulation over the contiguous US and its effects on satellite NO<sub>2</sub> retrievals
-
Published:2019-10-23
Issue:20
Volume:19
Page:13067-13078
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Zhu QindanORCID, Laughner Joshua L.ORCID, Cohen Ronald C.ORCID
Abstract
Abstract. Lightning is an important NOx source representing ∼10 % of the global source of odd N and a much larger percentage in the upper troposphere. The poor understanding of spatial and temporal patterns of lightning contributes to a large uncertainty in understanding upper tropospheric chemistry. We implement a lightning parameterization using the product of convective available potential energy (CAPE) and convective precipitation rate (PR) coupled with the Kain–Fritsch convective scheme (KF/CAPE-PR) into the Weather Research and Forecasting-Chemistry (WRF-Chem) model.
Compared to the cloud-top height (CTH) lightning parameterization combined with the Grell 3-D convective scheme (G3/CTH), we show that the switch of convective scheme improves the correlation of lightning flash density in the southeastern US from 0.30 to 0.67 when comparing against the Earth Networks Total Lightning Network; the switch of lightning parameterization contributes to the improvement of the correlation from 0.48 to 0.62 elsewhere in the US.
The simulated NO2 profiles using the KF/CAPE-PR parameterization exhibit better agreement with aircraft observations in the middle and upper troposphere. Using a lightning NOx production rate of 500 mol NO flash−1, the a priori NO2 profile generated by the simulation with the KF/CAPE-PR parameterization reduces the air mass factor for NO2 retrievals by 16 % on average in the southeastern US in the late spring and early summer compared to simulations using the G3/CTH parameterization. This causes an average change in NO2 vertical column density 4 times higher than the average uncertainty.
Funder
Smithsonian Astrophysical Observatory
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference59 articles.
1. Allen, D., Pickering, K., Duncan, B., and Damon, M.: Impact of lightning NO
emissions on North American photochemistry as determined using the Global
Modeling Initiative (GMI) model, J. Geophys. Res.-Atmos., 115, D22301, https://doi.org/10.1029/2010JD014062,
2010. a 2. Allen, D. J. and Pickering, K. E.: Evaluation of lightning flash rate
parameterizations for use in a global chemical transport model, J. Geophys.
Res.-Atmos., 107, ACH 15-1–ACH 15-21, https://doi.org/10.1029/2002JD002066,
2002. a 3. Barth, M. C., Cantrell, C. A., Brune, W. H., Rutledge, S. A., Crawford, J. H.,
Huntrieser, H., Carey, L. D., MacGorman, D., Weisman, M., Pickering, K. E.,
Bruning, E., Anderson, B., Apel, E., Biggerstaff, M., Campos, T.,
Campuzano-Jost, P., Cohen, R., Crounse, J., Day, D. A., Diskin, G., Flocke,
F., Fried, A., Garland, C., Heikes, B., Honomichl, S., Hornbrook, R., Huey,
L. G., Jimenez, J. L., Lang, T., Lichtenstern, M., Mikoviny, T., Nault, B.,
O’Sullivan, D., Pan, L. L., Peischl, J., Pollack, I., Richter, D., Riemer,
D., Ryerson, T., Schlager, H., St. Clair, J., Walega, J., Weibring, P.,
Weinheimer, A., Wennberg, P., Wisthaler, A., Wooldridge, P. J., and Ziegler,
C.: The Deep Convective Clouds and Chemistry (DC3) Field Campaign, B. Am. Meteorol. Soc., 96, 1281–1309,
https://doi.org/10.1175/BAMS-D-13-00290.1, 2015. a 4. Beirle, S., Huntrieser, H., and Wagner, T.: Direct satellite observation of lightning-produced NOx, Atmos. Chem. Phys., 10, 10965–10986, https://doi.org/10.5194/acp-10-10965-2010, 2010. a 5. Boccippio, D. J., Koshak, W. J., and Blakeslee, R. J.: Performance Assessment
of the Optical Transient Detector and Lightning Imaging Sensor. Part I:
Predicted Diurnal Variability, J. Atmos. Ocean. Tech.,
19, 1318–1332, https://doi.org/10.1175/1520-0426(2002)019<1318:PAOTOT>2.0.CO;2,
2002. a
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|