Affiliation:
1. Department of Climate and Space Sciences and Engineering University of Michigan Ann Arbor MI USA
2. Now at Environmental and Climate Sciences Department Brookhaven National Laboratory Upton NY USA
Abstract
AbstractPollen, one type of primary biological aerosol particle (PBAP), is emitted from the terrestrial biosphere and can undergo physical changes in the atmosphere via particle rupture. To examine the fate of pollen and its atmospheric processing, a pollen emission and transport scheme is coupled to the Weather Research and Forecasting Model with Chemistry (WRF‐Chem). We simulate the emission of pollen and its impacts on the cloud properties and precipitation in the Southern Great Plains from 12 to 19 April 2013, a period with both high pollen emissions and convective activity. We conduct a suite of ensemble runs that simulate primary pollen and three different pollen rupture mechanisms that generate subpollen particles, including (a) high humidity‐induced surface rupture, (b) high humidity‐induced in‐atmosphere plus surface rupture, and (c) lightning‐induced rupture, where in‐cloud and cloud‐to‐ground lightning strikes trigger pollen rupture events. When relative humidity is high (>80%), coarse primary pollen (∼1 μg m−3) is converted into fine subpollen particles (∼1.2e−4 μg m−3), which produces 80% more subpollen particles than lightning‐induced rupture. The in‐atmosphere humidity‐driven rupture predominantly produces subpollen particles, which is further enhanced during a frontal thunderstorm. During strong convection, vertical updrafts lift primary pollen and subpollen particles (∼0.5e−4 μg m−3) to the upper troposphere (∼12 km) and laterally transports the ruptured pollen in the anvil top outflow. In regions of high pollen and strong convection, ruptured pollen can influence warm cloud formation by decreasing low cloud (<4 km) cloud water mixing ratios and increasing ice phase hydrometeors aloft (>10 km).
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献