An Investigation on Potential Dispersal of Airborne Pollen Over China and Their Impact on Climate as Ice Nuclei Using RegCM‐Pollen

Author:

Song Rong1ORCID,Wang Tijian1ORCID,Li Shu1ORCID,Zhuang Bingliang1ORCID,Li Mengmeng1ORCID,Xie Min2ORCID,Luo Chuanxiu3ORCID,Kilifarska‐Nedialkova Natalya Andreeva4

Affiliation:

1. School of Atmospheric Sciences Nanjing University Nanjing China

2. School of Environment Nanjing Normal University Nanjing China

3. South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou China

4. Climate, Atmosphere and Waters Research Institute Bulgarian Academy of Sciences Sofia Bulgaria

Abstract

AbstractPollen can serve as an effective ice‐nuclei (IN), altering cloud microphysical and radiative properties, thus precipitation and cloud life cycles. Here, a nationwide pollen emission inventory with a horizontal resolution of 5 km was established based on a parameterization scheme of mass balance of pollen grain fluxes surrounding the plant crowns, and using satellite observational data sets (including leaf area index and fractional vegetation cover) as well as pollen emission rates. The potential emission is then implemented in RegCM‐pollen model which treated pollen as aerosol tracers. Besides, pollen‐IN parameterization schemes were incorporated in RegCM‐pollen to simulate the interactions between pollen and ice clouds. Investigations show that the mean annual pollen emission in China is 2.65 × 107 grains m−2 yr−1, mainly distributed in the south and northeast of China. The IN magnitude is mainly determined by a combination of temperature and pollen concentration. Notably, an increasing number concentration of pollen grains produces opposite effects in Southern China (SC) and Northern China (NC). The weakened upward motion and vertical transport of water vapor in NC made ice clouds hardly form, resulting in cloud forcing (CF) of +0.86 W/m2. In contrast, it generates a CF of −0.84 W/m2 in SC mainly owing to expanded cloud cover. The changes in shortwave radiative forcing is more significant compared to longwave radiative forcing in the two regions. At the surface, the net radiative forcing in NC is +0.74 W/m2, while it is a −0.51 W/m2 in SC. Among them, downward shortwave radiative forcing is approximately twice that of upward longwave radiative forcing in SC and 1.4 times in NC. Surface temperature shows rising over NC, ranging from 0.05 to 0.25 K. In SC, it is primarily decreasing by −0.12 to −0.03 K. The pollen‐IN effect also causes a decline of precipitation in NC (−0.17 mm/day) and a rise in SC (0.09 mm/day). Our results suggest that the pollen effect on ice clouds is complex, yet significant in understanding its impact on radiation and climate of the atmosphere.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3