Background nitrogen dioxide (NO2) over the United States and its implications for satellite observations and trends: effects of nitrate photolysis, aircraft, and open fires

Author:

Dang RuijunORCID,Jacob Daniel J.,Shah Viral,Eastham Sebastian D.ORCID,Fritz Thibaud M.ORCID,Mickley Loretta J.,Liu Tianjia,Wang Yi,Wang JunORCID

Abstract

Abstract. Tropospheric nitrogen dioxide (NO2) measured from satellites has been widely used to track anthropogenic NOx emissions, but its retrieval and interpretation can be complicated by the free tropospheric NO2 background to which satellite measurements are particularly sensitive. Tropospheric NO2 vertical column densities (VCDs) from the spaceborne Ozone Monitoring Instrument (OMI) averaged over the contiguous US (CONUS) show no trend after 2009, despite sustained decreases in anthropogenic NOx emissions, implying an important and rising contribution from the free tropospheric background. Here, we use the GEOS-Chem chemical transport model applied to the simulation of OMI NO2 to better understand the sources and trends of background NO2 over CONUS. The previous model underestimate of the background is largely corrected by the consideration of aerosol nitrate photolysis, which increases the model NO2 VCDs by 13 % on an annual basis (25 % in spring) and also increases the air mass factor (AMF) to convert the tropospheric slant column densities (SCDs) inferred from the OMI spectra into VCDs by 7 % on an annual basis (11 % in spring). The increase in the AMF decreases the retrieved NO2 VCDs in the satellite observations, contributing to the improved agreement with the model. Accounting for the 2009–2017 increase in aircraft NOx emissions drives only a 1.4 % mean increase in NO2 VCDs over CONUS and a 2 % increase in the AMF, but the combination of decreasing surface NOx emissions and increasing aircraft emissions is expected to drive a 14 % increase in the AMF over the next decade that will be necessary to account for in the interpretation of satellite NO2 trends. Fire smoke identification with the National Oceanic and Atmospheric Administration (NOAA) Hazard Mapping System (HMS) indicates that wildfires contribute 1 %–8 % of OMI NO2 VCDs over the western US in June–September and that this contribution has been increasing since 2009, contributing to the flattening of OMI NO2 trends. Future analyses of NO2 trends from satellite data to infer trends in surface NOx emissions must critically consider the effects of a rising free tropospheric background due to increasing emissions from aircraft, fires, and possibly lightning.

Funder

National Aeronautics and Space Administration

U.S. Environmental Protection Agency

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3