The Impact of Lightning NOx Production on Ground‐Level Ozone in Tehran

Author:

Gharaylou Maryam1ORCID,Pegahfar Nafiseh2ORCID,Alizadeh Omid13ORCID

Affiliation:

1. Institute of Geophysics University of Tehran Tehran Iran

2. Atmospheric Sciences Research Center Iranian National Institute for Oceanography and Atmospheric Science Tehran Iran

3. Geography Department Humboldt‐Universität zu Berlin Berlin Germany

Abstract

AbstractLightning‐generated nitrogen oxides (LNOx) have an impact on the concentration of ground‐level ozone which acts as a toxic air pollutant, thereby negatively influencing human health and the environment. To understand the impact of LNOx on ground‐level ozone, we simulated four thunderstorm events in Tehran using the WRF‐Chem model. As observations of LNOx are not available, we evaluated the temporal distribution of the simulated ground‐level ozone concentration against an air quality monitoring station. We also compared the simulation results against the spatial distribution of the total column ozone from the Ozone Monitoring Instrument. WRF‐Chem performs well in the simulation of ground‐level ozone concentration, with the best performance for an event with the highest lightning activity (correlation coefficient of 0.91). The analysis of the spatial distribution of the observed and simulated total column ozone also indicates the good performance of WRF‐Chem. Hourly variation in the simulated LNOx during lightning activity is compared against both hourly variation in the observed ground‐level ozone and the number of lightning for four thunderstorm events. There is an agreement between the simulated LNOx and the observed ground‐level ozone during lightning for two events, with correlation coefficients of 0.55 and 0.57. LNOx emissions enhance ozone production in the middle to upper troposphere, which can subsequently contribute to an increase in ground‐level ozone by transport, vertical mixing, and chemistry. In addition, the initiation of chemical processes in response to cloud‐to‐ground lightning strikes may contribute to an increase in both LNOx and the concentration of ground‐level ozone.

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3