The role of ozone atmosphere-snow gas exchange on polar, boundary-layer tropospheric ozone – a review and sensitivity analysis

Author:

Helmig D.,Ganzeveld L.,Butler T.,Oltmans S. J.

Abstract

Abstract. Recent research on snowpack processes and atmosphere-snow gas exchange has demonstrated that chemical and physical interactions between the snowpack and the overlaying atmosphere have a substantial impact on the composition of the lower troposphere. These observations also imply that ozone deposition to the snowpack possibly depends on parameters including the quantity and composition of deposited trace gases, solar irradiance, snow temperature and the substrate below the snowpack. Current literature spans a remarkably wide range of ozone deposition velocities (vdO3); several studies even reported positive ozone fluxes out of the snow. Overall, published values range from ~–3<vdO3<2 cm s−1, although most data are within 0<vdO3<0.2 cm s−1. This literature reveals a high uncertainty in the parameterization and the magnitude of ozone fluxes into (and possibly out of) snow-covered landscapes. In this study a chemistry and tracer transport model was applied to evaluate the applicability of the published vdO3 and to investigate the sensitivity of tropospheric ozone towards ozone deposition over Northern Hemisphere snow-covered land and sea-ice. Model calculations using increasing vdO3 of 0.0, 0.01, 0.05 and 0.10 cm s−1 resulted in general ozone sensitivities up to 20–30% in the Arctic surface layer, and of up to 130% local increases in selected Northern Latitude regions. The simulated ozone concentrations were compared with mean January ozone observations from 18 Arctic stations. Best agreement between the model and observations, not only in terms of absolute concentrations but also in the hourly ozone variability, was found by applying an ozone deposition velocity in the range of 0.00–0.01 cm s−1, which is smaller than most literature data and also significantly lower compared to the value of 0.05 cm s−1 that is commonly applied in large-scale atmospheric chemistry models. This sensitivity analysis demonstrates that large errors in the description of the wintertime tropospheric ozone budget stem from the uncertain magnitude of ozone deposition rates and the inability to properly parameterize ozone fluxes to snow-covered landscapes.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3