Influences of downward transport and photochemistry on surface ozone over East Antarctica during austral summer: in situ observations and model simulations

Author:

Girach Imran A.ORCID,Ojha NarendraORCID,Nair Prabha R.,Subrahmanyam Kandula V.ORCID,Koushik Neelakantan,Nazeer Mohammed M.,Kiran Kumar Nadimpally,Babu Surendran Nair Suresh,Lelieveld JosORCID,Pozzer AndreaORCID

Abstract

Abstract. Studies of atmospheric trace gases in remote, pristine environments are critical for assessing the accuracy of climate models and advancing our understanding of natural processes and global changes. We investigated the surface ozone (O3) variability over East Antarctica during the austral summer of 2015–2017 by combining surface and balloon-borne measurements at the Indian station Bharati (69.4∘ S, 76.2∘ E, ∼ 35 m above mean sea level) with EMAC (ECHAM5/MESSy Atmospheric Chemistry) atmospheric chemistry–climate model simulations. The model reproduced the observed surface O3 level (18.8 ± 2.3 nmol mol−1) with negligible bias and captured much of the variability (R = 0.5). Model-simulated tropospheric O3 profiles were in reasonable agreement with balloon-borne measurements (mean bias: 2–12 nmol mol−1). Our analysis of a stratospheric tracer in the model showed that about 41 %–51 % of surface O3 over the entire Antarctic region was of stratospheric origin. Events of enhanced O3 (∼ 4–10 nmol mol−1) were investigated by combining O3 vertical profiles and air mass back trajectories, which revealed the rapid descent of O3-rich air towards the surface. The photochemical loss of O3 through its photolysis (followed by H2O + O(1D)) and reaction with hydroperoxyl radicals (O3 + HO2) dominated over production from precursor gases (NO + HO2 and NO + CH3O2) resulting in overall net O3 loss during the austral summer. Interestingly, the east coastal region, including the Bharati station, tends to act as a stronger chemical sink of O3 (∼ 190 pmol mol−1 d−1) than adjacent land and ocean regions (by ∼ 100 pmol mol−1 d−1). This is attributed to reverse latitudinal gradients between H2O and O(1D), whereby O3 loss through photolysis (H2O + O(1D)) reaches a maximum over the east coast. Further, the net photochemical loss at the surface is counterbalanced by downward O3 fluxes, maintaining the observed O3 levels. The O3 diurnal variability of ∼ 1.5 nmol mol−1 was a manifestation of combined effects of mesoscale wind changes and up- and downdrafts, in addition to the net photochemical loss. The study provides valuable insights into the intertwined dynamical and chemical processes governing the O3 levels and variability over East Antarctica.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3