A comprehensive study about the in-cloud processing of nitrate through coupled measurements of individual cloud residuals and cloud water

Author:

Zhang GuohuaORCID,Hu Xiaodong,Sun Wei,Yang Yuxiang,Guo Ziyong,Fu Yuzhen,Wang HaichaoORCID,Zhou Shengzhen,Li LeiORCID,Tang MingjinORCID,Shi ZongboORCID,Chen Duohong,Bi XinhuiORCID,Wang XinmingORCID

Abstract

Abstract. While the formation and evolution of nitrate in airborne particles are extensively investigated, little is known about the processing of nitrate in clouds. Here we present a detailed investigation on the in-cloud formation of nitrate, based on the size-resolved mixing state of nitrate in the individual cloud residual and cloud-free particles obtained by single particle mass spectrometry, and also the mass concentrations of nitrate in the cloud water and PM2.5 at a mountain site (1690 m a.s.l. – above sea level) in southern China. The results show a significant enhancement of nitrate mass fraction and relative intensity of nitrate in the cloud water and the cloud residual particles, respectively, reflecting a critical role of in-cloud processing in the formation of nitrate. We first exclude the gas-phase scavenging of HNO3 and the facilitated activation of nitrate-containing particles as the major contribution for the enhanced nitrate, according to the size distribution of nitrate in individual particles. Based on regression analysis and theoretical calculations, we then highlight the role of N2O5 hydrolysis in the in-cloud formation of nitrate, even during the daytime, attributed to the diminished light in clouds. Nitrate is highly related (R2= ∼ 0.6) to the variations in [NOx][O3], temperature, and droplet surface area in clouds. Accounting for droplet surface area greatly enhances the predictability of the observed nitrate, compared with using [NOx][O3] and temperature. The substantial contribution of N2O5 hydrolysis to nitrate in clouds with diminished light during the daytime can be reproduced by a multiphase chemical box model. Assuming a photolysis rate at 30 % of the default setting, the overall contribution of N2O5 hydrolysis pathway to nitrate formation increases by ∼ 20 % in clouds. Given that N2O5 hydrolysis acts as a major sink of NOx in the atmosphere, further model updates would improve our understanding about the processes contributing to nitrate production in cloud and the cycling of odd nitrogen.

Funder

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Guangdong Provincial Applied Science and Technology Research and Development Program

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3