Formation of In‐Cloud Aqueous‐Phase Secondary Organic Matter and Related Characteristic Molecules

Author:

Sun Wei12,Zhang Guohua12ORCID,Guo Ziyong12,Fu Yuzhen12,Peng Xiaocong123,Yang Yuxiang12,Hu Xiaodong12,Lin Juying123,Jiang Feng4,Jiang Bin12ORCID,Liao Yuhong12ORCID,Chen Duohong5,Chen Jianmin6ORCID,Ou Jie7,Wang Xinming12ORCID,Peng Ping'an12,Bi Xinhui12ORCID

Affiliation:

1. State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization Guangzhou Institute of Geochemistry Chinese Academy of Sciences Guangzhou PR China

2. Guangdong‐Hong Kong‐Macao Joint Laboratory for Environmental Pollution and Control Guangzhou PR China

3. University of Chinese Academy of Sciences Beijing PR China

4. Institute of Meteorology and Climate Research Karlsruhe Institute of Technology Eggenstein‐Leopoldshafen Germany

5. State Environmental Protection Key Laboratory of Regional Air Quality Monitoring Guangdong Environmental Monitoring Center Guangzhou PR China

6. Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention Department of Environmental Science and Engineering Fudan University Shanghai PR China

7. Shaoguan Environmental Monitoring Center Shaoguan PR China

Abstract

AbstractThe formation process of in‐cloud aqueous‐phase secondary organic matter (aqSOM) and its characteristics are unclear. Herein, water‐soluble inorganic ions, oxalate, and water‐soluble organic carbon (WSOC) were determined in cloud water and aerosol (PM2.5) samples simultaneously collected at a remote mountain site in southern China during spring 2018 and winter 2020. The molecular compositions of water‐soluble organic matter (WSOM) in cloud water and aerosols were analyzed by a Fourier transform ion cyclotron resonance mass spectrometer in negative electrospray ionization (ESI‐) mode. The results showed that the mean concentration of WSOC was 6.27–8.54 mg C L−1 in cloud water and 0.60–1.37 μg C m−3 in aerosols. The strong correlation observed between WSOM and aqueous secondary matter (e.g., NO3 and oxalate), the positive matrix factorization results, and the elevated WSOM/K+ ratios observed in cloud water suggested enhanced aqSOM formation in cloud water. According to random forest analysis, the factors related to in‐cloud WSOM variation mainly included secondary ions, K+, cloud water pH, and atmospheric NOx. Additionally, 37 characteristic in‐cloud aqSOM molecules, classified as ‐Ox, ‐NOx, ‐N2Ox, and ‐N1‐2OxS, mainly consisting of dicarboxylic acids, nitrophenols, and dinitrophenols, were identified using linear discriminant analysis effect size (LefSe). The characteristic N‐ and S‐containing molecules in in‐cloud aqSOM with carbon numbers >10 had low or extremely low volatility; therefore, they might contribute to secondary organic aerosol formation after droplet evaporation. The results revealed the modifying effects of in‐cloud processes on aerosol organic composition at the molecular level and could improve our understanding of aerosol–cloud interactions.

Funder

National Natural Science Foundation of China

Postdoctoral Research Foundation of China

Youth Innovation Promotion Association

Guangdong Provincial Applied Science and Technology Research and Development Program

Publisher

American Geophysical Union (AGU)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3