Global inorganic nitrate production mechanisms: comparison of a global model with nitrate isotope observations

Author:

Alexander BeckyORCID,Sherwen TomásORCID,Holmes Christopher D.ORCID,Fisher Jenny A.ORCID,Chen QianjieORCID,Evans Mat J.ORCID,Kasibhatla PrasadORCID

Abstract

Abstract. The formation of inorganic nitrate is the main sink for nitrogen oxides (NOx = NO + NO2). Due to the importance of NOx for the formation of tropospheric oxidants such as the hydroxyl radical (OH) and ozone, understanding the mechanisms and rates of nitrate formation is paramount for our ability to predict the atmospheric lifetimes of most reduced trace gases in the atmosphere. The oxygen isotopic composition of nitrate (Δ17O(nitrate)) is determined by the relative importance of NOx sinks and thus can provide an observational constraint for NOx chemistry. Until recently, the ability to utilize Δ17O(nitrate) observations for this purpose was hindered by our lack of knowledge about the oxygen isotopic composition of ozone (Δ17O(O3)). Recent and spatially widespread observations of Δ17O(O3) motivate an updated comparison of modeled and observed Δ17O(nitrate) and a reassessment of modeled nitrate formation pathways. Model updates based on recent laboratory studies of heterogeneous reactions render dinitrogen pentoxide (N2O5) hydrolysis as important as NO2 + OH (both 41 %) for global inorganic nitrate production near the surface (below 1 km altitude). All other nitrate production mechanisms individually represent less than 6 % of global nitrate production near the surface but can be dominant locally. Updated reaction rates for aerosol uptake of NO2 result in significant reduction of nitrate and nitrous acid (HONO) formed through this pathway in the model and render NO2 hydrolysis a negligible pathway for nitrate formation globally. Although photolysis of aerosol nitrate may have implications for NOx, HONO, and oxidant abundances, it does not significantly impact the relative importance of nitrate formation pathways. Modeled Δ17O(nitrate) (28.6±4.5 ‰) compares well with the average of a global compilation of observations (27.6±5.0 ‰) when assuming Δ17O(O3) = 26 ‰, giving confidence in the model's representation of the relative importance of ozone versus HOx (= OH + HO2 + RO2) in NOx cycling and nitrate formation on the global scale.

Funder

Australian Research Council

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3