Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ<sup>17</sup>O) of atmospheric nitrate
-
Published:2009-07-28
Issue:14
Volume:9
Page:5043-5056
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Alexander B.,Hastings M. G.,Allman D. J.,Dachs J.,Thornton J. A.,Kunasek S. A.
Abstract
Abstract. The oxygen isotopic composition (Δ17O) of atmospheric nitrate is a function of the relative abundance of atmospheric oxidants (O3, ROx=OH+HO2+RO2) and the formation pathway of nitrate from its precursor NOx (=NO+NO2). Coupled observations and modeling of nitrate Δ17O can be used to quantify the relative importance of chemical formation pathways leading to nitrate formation and reduce uncertainties in the budget of reactive nitrogen chemistry in the atmosphere. We present the first global model of atmospheric nitrate Δ17O and compare with available observations. The largest uncertainty for calculations of nitrate Δ17O is the unconstrained variability in the Δ17O value of tropospheric ozone. The model shows the best agreement with a global compilation of observations when assuming a Δ17O value of tropospheric ozone equal to 35‰ and preferential oxidation of NOx by the terminal oxygen atoms of ozone. Calculated values of annual-mean nitrate Δ17O in the lowest model layer (0–200 m above the surface) vary from 7‰ in the tropics to 41‰ in the polar-regions. The global, annual-mean tropospheric inorganic nitrate burden is dominated by nitrate formation via NO2+OH (76%), followed by N2O5 hydrolysis (18%) and NO3+DMS/HC (4%). Calculated nitrate Δ17O is sensitive to the relative importance of each nitrate formation pathway, suggesting that observations of nitrate Δ17O can be used to quantify the importance of individual reactions (e.g. N2O5 hydrolysis) leading to nitrate formation if the Δ17O value of ozone is known.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference107 articles.
1. Alexander, B., Savarino, J., Kreutz, K. J., and Thiemens, M. H.: Impact of preindustrial biomass-burning emissions on the oxidation pathways of tropospheric sulfur and nitrogen, J. Geophys. Res., 109, D08303, https://doi.org/10.1029/2003JD004218, 2004. 2. Alexander, B., Savarino, J., Lee, C. C. W., Park, R. J., Jacob, D. J., Li, Q., Yantosca, R. M., and Thiemens, M. H.: Sulfate formation in sea-salt aerosols: Constraints from oxygen isotopes, J. Geophys. Res., 110, D10307, https://doi.org/10.1029/2004JD005659, 2005. 3. Benkovitz, C.M., Schultz, M. T., Pacyna, J., Tarrason, L., Dignon, J., Voldner, E. C., Spiro, P. A., Logan, J. A., and Graedel, T. E.: Global, gridded inventories for anthropogenic emissions of sulfur and nitrogen, J. Geophys. Res., 101, 29239–29253, 1996. 4. Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106(D19), 23073–23095, 2001. 5. Bhattacharya, S. K., Pandey, A., and Savarino, J.: Determination of intramolecular isotope distribution of ozone by oxidation reaction with silver metal, J. Geophys. Res, 113, D03303, https://doi.org/10.1029/2006JF008309, 2008.
Cited by
240 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|