Measurement report: The influence of traffic and new particle formation on the size distribution of 1–800 nm particles in Helsinki – a street canyon and an urban background station comparison

Author:

Okuljar Magdalena,Kuuluvainen Heino,Kontkanen JenniORCID,Garmash OlgaORCID,Olin MiskaORCID,Niemi Jarkko V.,Timonen HilkkaORCID,Kangasluoma JuhaORCID,Tham Yee JunORCID,Baalbaki RimaORCID,Sipilä Mikko,Salo LauraORCID,Lintusaari HennaORCID,Portin Harri,Teinilä Kimmo,Aurela MinnaORCID,Dal Maso MiikkaORCID,Rönkkö Topi,Petäjä TuukkaORCID,Paasonen PauliORCID

Abstract

Abstract. Most of the anthropogenic air pollution sources are located in urban environments. The contribution of these sources to the population of atmospheric particles in the urban environment is poorly known. In this study, we investigated the aerosol particle number concentrations in a diameter range from 1 to 800 nm at a street canyon site and at a background station within 1 km from each other in Helsinki, Finland. We use these number size distribution data together with complementary trace gas data and develop a method to estimate the relative contributions of traffic and atmospheric new particle formation (NPF) to the concentrations of sub-3 nm particles. During the daytime, the particle concentrations were higher at the street canyon site than at the background station in all analyzed modes: sub-3 nm particles, nucleation mode (3–25 nm), Aitken mode (25–100 nm), and accumulation mode (100–800 nm). The population of sub-3 nm and nucleation mode particles was linked to local sources such as traffic, while the accumulation mode particles were more related to non-local sources. Aitken mode particles were dominated by local sources at the street canyon site, while at the background station they were mainly influenced by non-local sources. The results of this study support earlier research showing direct emissions of the sub-3 nm particles from traffic. However, by using our new method, we show that, during NPF events, traffic contribution to the total sub-3 nm particle concentration can be small and during daytime (6:00–20:00) in spring it does not dominate the sub-3 nm particle population at either of the researched sites. In the future, the contribution of traffic to particle number concentrations in different urban environments can be estimated with a similar approach, but determining the relationships between the gas and particle concentrations from observations needs to be conducted with longer data sets from different urban environments.

Funder

Tampereen Teknillinen Yliopisto

Helsingin Yliopisto

Horizon 2020 Framework Programme

Academy of Finland

Business Finland

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3