High Concentration of Atmospheric Sub‐3 nm Particles in Polluted Environment of Eastern China: New Particle Formation and Traffic Emission

Author:

Chen Liangduo1ORCID,Qi Ximeng12ORCID,Niu Guangdong1,Li Yuanyuan1,Liu Chong1,Lai Shiyi1,Liu Yuliang12,Nie Wei12ORCID,Yan Chao12,Wang Jiaping12,Chi Xuguang12,Paasonen Pauli3ORCID,Hussein Tareq34,Lehtipalo Katrianne35ORCID,Kerminen Veli‐Matti3,Petäjä Tuukka3,Kulmala Markku3,Ding Aijun12ORCID

Affiliation:

1. Joint International Research Laboratory of Atmospheric and Earth System Sciences School of Atmospheric Sciences Nanjing University Nanjing China

2. Collaborative Innovation Center for Climate Change Nanjing University Nanjing China

3. Faculty of Science Institute for Atmospheric and Earth Systems Research/Physics University of Helsinki Helsinki Finland

4. Environmental and Atmospheric Research Lab (EARL) Department of Physics School of Science University of Jordan Amman Jordan

5. Finnish Meteorological Institute Helsinki Finland

Abstract

AbstractObservations of atmospheric sub‐3 nm particles are essential for understanding the initial stages of new particle formation (NPF) and the origin of aerosol particles. In this study, 3 years (2018–2020) of measurements of sub‐3 nm particles were conducted in the Yangtze River Delta (YRD) of eastern China. High concentrations of sub‐3 nm particles were observed, with number concentration in the range from 103 to 106 cm−3. During the daytime, the sub‐3 nm particle concentration was found to peak at around the noon, indicating strong photochemical nucleation processes. The formation rates of sub‐3 nm particles were high during the NPF event days, with an average value of 86 cm−3 s−1, and this rate was related to the sulfuric acid (SA) concentration. The particle growth rates below 3 nm were about 1–2 nm h−1, much lower than the growth rates of larger particles. At nighttime, sub‐3 nm particle concentrations remained relatively high (3 × 103 to 1.2 × 104 cm−3) and were related to the NOx concentration, suggesting traffic emission to be a significant source. The sub‐3 nm proxy was developed to estimate the contributions of NPF and traffic emission. During the daytime, 74.8% and 12.4% of the sub‐3 nm particles were estimated to originate from SA‐driven NPF and traffic emissions, respectively. However, other sources were estimated to contribute 61.8% of sub‐3 nm particles at nighttime, suggesting the formation mechanisms of sub‐3 nm particles are still unclear in this environment. Our study sheds more light on the characteristics and sources of sub‐3 nm particles in polluted environments.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3