Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions

Author:

Andreae M. O.

Abstract

Abstract. A large number of published and unpublished measurements of cloud condensation nuclei (CCN) concentrations and aerosol optical thickness (AOT) measurements have been analyzed. AOT measurements were obtained mostly from the AERONET network, and selected to be collocated as closely as possible to the CCN investigations. In remote marine regions, CCN0.4 (CCN at a supersaturation of 0.4%) are around 110 cm−3 and the mean AOT500 (AOT at 500 nm) is 0.057. Over remote continental areas, CCN are almost twice as abundant, while the mean AOT500 is ca. 0.075. (Sites dominated by desert dust plumes were excluded from this analysis.) Some, or maybe even most of this difference must be because even remote continental sites are in closer proximity to pollution sources than remote marine sites. This suggests that the difference between marine and continental levels must have been smaller before the advent of anthropogenic pollution. Over polluted marine and continental regions, the CCN concentrations are about one order of magnitude higher than over their remote counterparts, while AOT is about five times higher over polluted than over clean regions. The average CCN concentrations from all studies show a remarkable correlation to the corresponding AOT values, which can be expressed as a power law. This can be very useful for the parameterization of CCN concentrations in modeling studies, as it provides an easily measured proxy for this variable, which is difficult to measure directly. It also implies that, at least at large scales, the radiative and microphysical effects of aerosols on cloud physics are correlated and not free to vary fully independently. While the observed strong empirical correlation is remarkable, it must still be noted that there is about a factor-of-four range of CCN concentrations at a given AOT, and that there remains considerable room for improvement in remote sensing techniques for CCN abundance.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3