Technical Note: Review of methods for linear least-squares fitting of data and application to atmospheric chemistry problems

Author:

Cantrell C. A.

Abstract

Abstract. The representation of data, whether geophysical observations, numerical model output or laboratory results, by a best fit straight line is a routine practice in the geosciences and other fields. While the literature is full of detailed analyses of procedures for fitting straight lines to values with uncertainties, a surprising number of scientists blindly use the standard least-squares method, such as found on calculators and in spreadsheet programs, that assumes no uncertainties in the x values. Here, the available procedures for estimating the best fit straight line to data, including those applicable to situations for uncertainties present in both the x and y variables, are reviewed. Representative methods that are presented in the literature for bivariate weighted fits are compared using several sample data sets, and guidance is presented as to when the somewhat more involved iterative methods are required, or when the standard least-squares procedure would be expected to be satisfactory. A spreadsheet-based template is made available that employs one method for bivariate fitting.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3