Hydrological response to climate change and human activities in the Three-River Source Region
-
Published:2023-04-05
Issue:7
Volume:27
Page:1477-1492
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Su Ting, Miao ChiyuanORCID, Duan QingyunORCID, Gou Jiaojiao, Guo Xiaoying, Zhao Xi
Abstract
Abstract. The Three-River Source Region (TRSR), which is known as “China's Water Tower” and affects the water resources security of 700 million people
living downstream, has experienced significant hydrological changes in the
past few decades. In this work, we used an extended variable infiltration
capacity (VIC) land surface hydrologic model (VIC-Glacier) coupled with the
degree-day factor algorithm to simulate the runoff change in the TRSR during 1984–2018. VIC-Glacier performed well in the TRSR, with Nash–Sutcliffe efficiency (NSE) above 0.68, but it was sensitive to the quality of the limited ground-based precipitation. This was especially marked in the source region of the Yangtze River: when we used Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks – Climate Data Record (PERSIANN-CDR), which has better spatial details, instead of ground-based precipitation, the NSE of Tuotuohe station increased from 0.31 to 0.86. Using the well-established VIC-Glacier model, we studied the contribution of each runoff component (rainfall, snowmelt, and glacier runoff) to the total runoff and the causes of changes in runoff. The results indicate that rainfall runoff contributed over 80 % of the total runoff, while snowmelt runoff and glacier runoff both contributed less than 10 % in 1984–2018. Climate change was the main reason for the increase in runoff in the TRSR after 2004, accounting for 75 %–89 %, except in the catchment monitored by Xialaxiu station. Among climate change factors, precipitation had the greatest impact on runoff. Finally, through a series of hypothetical climate change scenario experiments, we found that a future simultaneous increase in precipitation and temperature would increase the total runoff, rainfall runoff, and glacier runoff. The snowmelt runoff might remain unchanged because the increased precipitation, even with seasonal fluctuations, was basically completely compensated for by the decreased solid-to-liquid precipitation ratio. These findings improve our understanding of hydrological processes and provide insights for policy-makers on how to optimally allocate water resources and manage the TRSR in response to global climate change.
Funder
National Natural Science Foundation of China State Key Laboratory of Earth Surface Processes and Resource Ecology
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference79 articles.
1. Ahmed, N., Wang, G., Booij, M. J., Oluwafemi, A., Hashmi, M. Z.-u.-R., Ali, S., and Munir, S.: Climatic Variability and Periodicity for Upstream Sub-Basins of the Yangtze River, China, Water, 12, 842, https://doi.org/10.3390/w12030842, 2020. 2. Ahmed, N., Wang, G., Booij, M. J., Xiangyang, S., Hussain, F., and Nabi, G.: Separation of the Impact of Landuse/Landcover Change and Climate Change on Runoff in the Upstream Area of the Yangtze River, China, Water Resour. Manag., 36, 181–201, https://doi.org/10.1007/s11269-021-03021-z, 2021. 3. Ashouri, H., Hsu, K.-L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., Nelson, B. R., and Prat, O. P.: PERSIANN-CDR Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies, B. Am. Meteorol. Soc., 96, 69–83, https://doi.org/10.1175/bams-d-13-00068.1, 2015. 4. Bahr, D. B., Meier, M. F., and Peckham, S. D.: The physical basis of glacier volume-area scaling, J. Geophys. Res., 102, 20355–20362, https://doi.org/10.1029/97JB01696, 1997. 5. Bai, P. and Liu, X.: Evaluation of Five Satellite-Based Precipitation Products in Two Gauge-Scarce Basins on the Tibetan Plateau, Remote Sens.-Basel, 10, 1316, https://doi.org/10.3390/rs10081316, 2018.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|