Hydrological Projections in the Third Pole Using Artificial Intelligence and an Observation‐Constrained Cryosphere‐Hydrology Model

Author:

Long Junshui12ORCID,Wang Lei12ORCID,Chen Deliang3ORCID,Li Ning1ORCID,Zhou Jing1ORCID,Li Xiuping1ORCID,Guo Xiaoyu1ORCID,Liu Hu12,Chai Chenhao4,Fan Xinfeng12

Affiliation:

1. State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER) Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing China

2. University of Chinese Academy of Sciences Beijing China

3. Regional Climate Group Department of Earth Sciences University of Gothenburg Gothenburg Sweden

4. School of Surveying and Land Information Engineering Henan Polytechnic University Jiaozuo China

Abstract

AbstractThe water resources of the Third Pole (TP), highly sensitive to climate change and glacier melting, significantly impact the water and food security of millions in Asia. However, projecting future spatial‐temporal runoff changes for TP's mountainous basins remains a formidable challenge. Here, we've leveraged the long short‐term memory model (LSTM) to craft a grid‐scale artificial intelligence (AI) model named LSTM‐grid. This model has enabled the production of hydrological projections for the seven major river basins of TP. The LSTM‐grid model integrates monthly precipitation, air temperature, and total glacier mass changes (total_GMC) data at a 0.25‐degree model grid. Training the LSTM‐grid model employed gridded historical monthly runoff and evapotranspiration data sets generated by an observation‐constrained cryosphere‐hydrology model at the headwaters of seven TP river basins during 2000–2017. Our results demonstrate the LSTM grid's effectiveness and usefulness, exhibiting a Nash‐Sutcliffe Efficiency coefficient exceeding 0.92 during the verification periods (2013–2017). Moreover, river basins in the monsoon region exhibited a higher rate of runoff increase compared to those in the westerlies region. Intra‐annual projections indicated notable increases in spring runoff, especially in basins where glacier meltwater significantly contributes to runoff. Additionally, the LSTM‐grid model aptly captures the runoff changes before and after the turning points of glacier melting, highlighting the growing influence of precipitation on runoff after reaching the maximum total_GMC. Therefore, the LSTM‐grid model offers a fresh perspective for understanding the spatiotemporal distribution of water resources in high‐mountain glacial regions by tapping into AI's potential to drive scientific discovery and provide reliable data.

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3