Model Diagnostic Analysis in a Cold Basin Influenced by Frozen Soils With the Aid of Stable Isotope

Author:

Nan Yi12ORCID,Tian Fuqiang12ORCID,Li Zongxing3ORCID

Affiliation:

1. State Key Laboratory of Hydroscience and Engineering & Department of Hydraulic Engineering Tsinghua University Beijing China

2. Key Laboratory of Hydrosphere Sciences of the Ministry of Water Resources Tsinghua University Beijing China

3. Key Laboratory of Ecohydrology of Inland River Basin Northwest Institute of Eco‐Environment and Resources Chinese Academy of Sciences Lanzhou China

Abstract

AbstractUnderstanding the hydrological processes on the Tibetan Plateau (TP) under climate change is an important scientific question. The frequent multiphase transfer exacerbates the complexity of hydrological processes on the TP, which brings equifinality problem to hydrological models and causes large uncertainties in quantifying the contributions of runoff components. Tracer‐aided hydrological models are helpful for improving model performances and have been adopted in cryospheric regions, but the influence of frozen soil has yet to be considered. This study adopted the Tracer‐aided Tsinghua Representative Elementary Watershed model (THREW‐T) in a typical cold basin with widespread frozen soil on the TP. The model structure was diagnosed with isotope by identifying the influences of frozen soil. A simplified catchment‐scale frozen soil module was incorporated into the model. Results showed that: (a) The THREW‐T model cannot simultaneously simulate baseflow and stream water isotope well. The imbalance of simulations on two objectives could be attributed to the influence of frozen soil, resulting in seasonal variation of soil‐related parameters, which was not considered in the model. (b) Incorporating the frozen soil module significantly improved the balance of baseflow and isotope simulation, simultaneously producing low baseflow and high contribution of subsurface runoff during wet seasons. (c) The frozen soil had little influence on the annual streamflow, but changed the runoff seasonality by reducing baseflow during dry seasons and increasing subsurface runoff during wet seasons. The frozen soil module was still simplified, and further work is needed to improve the physical representation of soil freeze‐thaw process. This study highlights the value of tracer‐aided hydrological modeling method on diagnosing model structure by identifying the influence of specific processes such as frozen soil.

Funder

National Natural Science Foundation of China

Tsinghua University

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3