Author:
Yokoyama H.,Date H.,Kanai S.,Takeda H.
Abstract
Abstract. With the spread of the Mobile Laser Scanning (MLS) system, the demands for the management of road and facilities using MLS point clouds have increased. Especially, pole-like objects such as streetlights, utility poles, street signs and etc. are in high demand as facilities to be managed. We propose a method for recognizing pole-like objects from MLS point clouds. Our method is based on Laplacian smoothing using the k-nearest neighbors graph, Principal Component Analysis for recognizing points on pole-like objects, and thresholding for the degree of pole-like objects. Our method can robustly recognize pole-like objects with various radii and tilt angles from MLS point clouds. For correctly segmented objects, accuracy of pole-like object recognition is on average 97.4%.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献