Extracting Traffic Signage by Combining Point Clouds and Images

Author:

Zhang Furao123,Zhang Jianan123,Xu Zhihong123,Tang Jie123,Jiang Peiyu4,Zhong Ruofei123

Affiliation:

1. Key Laboratory of 3D Information Acquisition and Application, MOE, Capital Normal University, Beijing 100048, China

2. Base of the State Key Laboratory of Urban Environmental Process and Digital Modeling, Capital Normal University, Beijing 100048, China

3. College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China

4. Department of Statistics, Uppsala University, 75120 Uppsala, Sweden

Abstract

Recognizing traffic signs is key to achieving safe automatic driving. With the decreasing cost of LiDAR, the accurate extraction of traffic signs using point cloud data has received wide attention. In this study, we propose combining point cloud and image traffic sign extraction: firstly, we use the improved YoloV3 model to detect traffic signs in panoramic images. The specific improvement is that the convolution block attention module is added to the algorithm framework, the traditional K-means clustering algorithm is improved, and Focal Loss is introduced as the loss function. It shows higher accuracy on the TT100K dataset, with a 1.4% improvement in accuracy compared to the previous YoloV3. Then, the point cloud of the area where the traffic sign is located is extracted by combining the image detection results. On this basis, the outline of the traffic sign is accurately extracted using the reflection intensity, spatial geometry and other information. Compared with the traditional method, the proposed method can effectively reduce the missed detection rate, narrow the range of point cloud, and improve the detection accuracy by 10.2%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Methodology to Obtain Traffic Data and Road Incidents Through Maps Applications;Communications in Computer and Information Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3