Extraction of Guardrails from MMS Data Using Convolutional Neural Network

Author:

Matsumoto Hiroki, ,Mori Yuma,Masuda Hiroshi

Abstract

Mobile mapping systems can capture point clouds and digital images of roadside objects. Such data are useful for maintenance, asset management, and 3D map creation. In this paper, we discuss methods for extracting guardrails that separate roadways and walkways. Since there are various shape patterns for guardrails in Japan, flexible methods are required for extracting them. We propose a new extraction method based on point processing and a convolutional neural network (CNN). In our method, point clouds and images are segmented into small fragments, and their features are extracted using CNNs for images and point clouds. Then, features from images and point clouds are combined and investigated using whether they are guardrails or not. Based on our experiments, our method could extract guardrails from point clouds with a high success rate.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extraction of block walls from point clouds measured by Mobile Mapping System;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2024-06-11

2. Automatic Characterization of WEDM Single Craters Through AI Based Object Detection;International Journal of Automation Technology;2024-03-05

3. A GAN-Augmented CNN Approach for Automated Roadside Safety Assessment of Rural Roadways;Journal of Computing in Civil Engineering;2024-03

4. Network-Level Guardrail Extraction Based on 3D Local Features from Mobile LiDAR Sensor;Journal of Computing in Civil Engineering;2022-11

5. Road marking degradation analysis using 3D point cloud data acquired with a low-cost Mobile Mapping System;Automation in Construction;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3