Abstract
This study aims to automatically detect pavement cracks on urban roads by employing the 3D point clouds acquired by a mobile laser scanning (MLS) system. Our method consists of four steps: ground point filtering, high-pass convolution, matched filtering, and noise removal. First, a voxel-based upward growing method is applied to construct Digital Terrain Model (DTM) of the road surface. Then, a high-pass filter convolutes the DTM to detect local elevation changes that may embed cracking information. Next, a two-step matched filter is applied to extract crack features. Lastly, a noise removal process is conducted to refine the results. Instead of using MLS intensity, this study takes advantages of the MLS elevation information to perform automated crack detection from large-volume, mixed-density, unstructured MLS point clouds. Four types of cracks including longitudinal, transvers, random, and alligator cracks are detected. Our results demonstrated that the proposed method works well with the RIEGL VMX-450 point clouds and can detect cracks in moderate-to-severe severity (13 - 25 mm) within a 200 m by 30 m urban road segment located in Kingston, Ontario, at one time. Due to the resolution capability, small cracks with slight severity remain unclear in the MLS point cloud.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献