UAV-Based Image and LiDAR Fusion for Pavement Crack Segmentation

Author:

Elamin Ahmed12,El-Rabbany Ahmed1

Affiliation:

1. Department of Civil Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada

2. Department of Civil Engineering, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt

Abstract

Pavement surface maintenance is pivotal for road safety. There exist a number of manual, time-consuming methods to examine pavement conditions and spot distresses. More recently, alternative pavement monitoring methods have been developed, which take advantage of unmanned aerial systems (UASs). However, existing UAS-based approaches make use of either image or LiDAR data, which do not allow for exploring the complementary characteristics of the two systems. This study explores the feasibility of fusing UAS-based imaging and low-cost LiDAR data to enhance pavement crack segmentation using a deep convolutional neural network (DCNN) model. Three datasets are collected using two different UASs at varying flight heights, and two types of pavement distress are investigated, namely cracks and sealed cracks. Four different imaging/LiDAR fusing combinations are created, namely RGB, RGB + intensity, RGB + elevation, and RGB + intensity + elevation. A modified U-net with residual blocks inspired by ResNet was adopted for enhanced pavement crack segmentation. Comparative analyses were conducted against state-of-the-art networks, namely U-net and FPHBN networks, demonstrating the superiority of the developed DCNN in terms of accuracy and generalizability. Using the RGB case of the first dataset, the obtained precision, recall, and F-measure are 77.48%, 87.66%, and 82.26%, respectively. The fusion of the geometric information from the elevation layer with RGB images led to a 2% increase in recall. Fusing the intensity layer with the RGB images yielded a reduction of approximately 2%, 8%, and 5% in the precision, recall, and F-measure. This is attributed to the low spatial resolution and high point cloud noise of the used LiDAR sensor. The second dataset crack samples obtained largely similar results to those of the first dataset. In the third dataset, capturing higher-resolution LiDAR data at a lower altitude led to improved recall, indicating finer crack detail detection. This fusion, however, led to a decrease in precision due to point cloud noise, which caused misclassifications. In contrast, for the sealed crack, the addition of LiDAR data improved the sealed crack segmentation by about 4% and 7% in the second and third datasets, respectively, compared to the RGB cases.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3