Fusing Multispectral and LiDAR Data for CNN-Based Semantic Segmentation in Semi-Arid Mediterranean Environments: Land Cover Classification and Analysis

Author:

Chroni Athanasia1,Vasilakos Christos1ORCID,Christaki Marianna1,Soulakellis Nikolaos1

Affiliation:

1. Department of Geography, University of the Aegean, 81100 Mytilene, Greece

Abstract

Spectral confusion among land cover classes is quite common, let alone in a complex and heterogenous system like the semi-arid Mediterranean environment; thus, employing new developments in remote sensing, such as multispectral imagery (MSI) captured by unmanned aerial vehicles (UAVs) and airborne light detection and ranging (LiDAR) techniques, with deep learning (DL) algorithms for land cover classification can help to address this problem. Therefore, we propose an image-based land cover classification methodology based on fusing multispectral and airborne LiDAR data by adopting CNN-based semantic segmentation in a semi-arid Mediterranean area of northeastern Aegean, Greece. The methodology consists of three stages: (i) data pre-processing, (ii) semantic segmentation, and (iii) accuracy assessment. The multispectral bands were stacked with the calculated Normalized Difference Vegetation Index (NDVI) and the LiDAR-based attributes height, intensity, and number of returns converted into two-dimensional (2D) images. Then, a hyper-parameter analysis was performed to investigate the impact on the classification accuracy and training time of the U-Net architecture by varying the input tile size and the patch size for prediction, including the learning rate and algorithm optimizer. Finally, comparative experiments were conducted by altering the input data type to test our hypothesis, and the CNN model performance was analyzed by using accuracy assessment metrics and visually comparing the segmentation maps. The findings of this investigation showed that fusing multispectral and LiDAR data improves the classification accuracy of the U-Net, as it yielded the highest overall accuracy of 79.34% and a kappa coefficient of 0.6966, compared to using multispectral (OA: 76.03%; K: 0.6538) or LiDAR (OA: 37.79%; K: 0.0840) data separately. Although some confusion still exists among the seven land cover classes observed, the U-Net delivered a detailed and quite accurate segmentation map.

Publisher

MDPI AG

Reference118 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3