Atmospheric oxidation in the Mexico City Metropolitan Area (MCMA) during April 2003

Author:

Shirley T. R.,Brune W. H.,Ren X.,Mao J.,Lesher R.,Cardenas B.,Volkamer R.,Molina L. T.,Molina M. J.,Lamb B.,Velasco E.,Jobson T.,Alexander M.

Abstract

Abstract. The Mexico City Metropolitan Area (MCMA) study in April 2003 had measurements of many atmospheric constituents, including OH and HO2. It provided the first opportunity to examine atmospheric oxidation in a megacity in a developing country that has more pollution than typical U.S. and European cities. At midday, OH typically reached 0.35 pptv (~7×106 cm−3), comparable to amounts observed in U.S. cities, but HO2 reached 40 pptv, more than observed in most U.S. cities. The OH reactivity was also measured, even during the highly polluted morning rush hour. MCMA's OH reactivity was 25 s−1 during most of the day and 120 s−1 at morning rush hour, which was several times greater than has been measured in any U.S. city. Median measured and modeled OH and HO2 agreed to within combined uncertainties, although for OH, the model exceeded the measurement by more than 30% during midday. OH production and loss, which were calculated from measurements, were in balance to within uncertainties, although production exceeded loss during morning rush hour. This imbalance has been observed in other cities. The HO2/OH ratio from measurements and steady-state analyses have essentially the same dependence on NO, except when NO was near 100 ppbv. This agreement is unlike other urban studies, in which HO2/OH ratio decreased much less than expected as NO increased. As a result of the active photochemistry in MCMA 2003, the median calculated ozone production from measured HO2 reached 50 ppb h−1, a much higher rate than observed in U.S. cities.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 204 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3