OH measurements in the coastal atmosphere of South China: possible missing OH sinks in aged air masses
-
Published:2023-06-26
Issue:12
Volume:23
Page:7057-7074
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Zou Zhouxing, Chen QianjieORCID, Xia MenORCID, Yuan Qi, Chen YiORCID, Wang Yanan, Xiong Enyu, Wang ZheORCID, Wang TaoORCID
Abstract
Abstract. The hydroxyl radical (OH) is the main atmospheric oxidant responsible for
the removal of many reduced trace gases and the formation of secondary air
pollutants. However, due to technical difficulties in measuring OH, the
existing measurements of atmospheric OH concentrations are limited, and its
sources and sinks are not well understood under low-nitrogen-oxide
(NOx) conditions. In this study, we observed the OH concentrations
using chemical ionization mass spectrometry at a coastal site in Hong Kong
from October to November 2020. The average noontime OH concentration over
the study period was measured at 4.9±2.1×106 cm−3. We found that a box model with comprehensive observational constraints reproduced the observed daytime OH concentrations when air parcels originated from the continental regions. However, this model overpredicted the observed daytime OH concentrations for coastal air parcels by 142 % on average. Unaccounted-for OH sinks in the model are proposed to be the cause of this overprediction. A missing OH reactivity, which is defined as the pseudo-first-order rate coefficient for OH loss by unmeasured trace gases, was estimated as 5.0±2.6 s−1 (lower limit) in the coastal air, and the missing reactivity increased with decreasing concentrations of NOx and volatile organic compounds (VOCs). Further studies are needed to find out the exact cause of the model overestimation and to identify the suspected unmeasured chemical species that contribute to the OH budget, in order to better quantify the formation of secondary air pollutants.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference75 articles.
1. Berresheim, H., Elste, T., Plass-Dülmer, C., Eiseleb, F. L., and Tannerb, D. J.: Chemical ionization mass spectrometer for long-term measurements of atmospheric OH and H2SO4, Int. J. Mass Spectrom., 202, 91–109, https://doi.org/10.1016/S1387-3806(00)00233-5, 2000. 2. Berresheim, H., Elste, T., Tremmel, H. G., Allen, A. G., Hansson, H.-C., Rosman, K., Dal Maso, M., Mäkelä, J. M., Kulmala, M., and O'Dowd, C.
D.: Gas-aerosol relationships of H2SO4, MSA, and OH: Observations
in the coastal marine boundary layer at Mace Head, Ireland, J. Geophys. Res.-Atmos., 107, PAR 5-1–PAR 5-12, https://doi.org/10.1029/2000JD000229, 2002. 3. Berresheim, H., Plass-Dülmer, C., Elste, T., Mihalopoulos, N., and Rohrer, F.: OH in the coastal boundary layer of Crete during MINOS: Measurements and relationship with ozone photolysis, Atmos. Chem. Phys., 3, 639–649, https://doi.org/10.5194/acp-3-639-2003, 2003. 4. Brune, W. H., Miller, D. O., Thames, A. B., Allen, H. M., Apel, E. C., Blake, D. R., Bui, T. P., Commane, R., Crounse, J. D., Daube, B. C., Diskin, G. S., DiGangi, J. P., Elkins, J. W., Hall, S. R., Hanisco, T. F., Hannun, R. A., Hintsa, E. J., Hornbrook, R. S., Kim, M. J., McKain, K., Moore, F. L., Neuman, J. A., Nicely, J. M., Peischl, J., Ryerson, T. B., St. Clair, J. M., Sweeney, C., Teng, A. P., Thompson, C., Ullmann, K., Veres, P. R., Wennberg, P. O., and Wolfe, G. M.: Exploring Oxidation in the Remote Free Troposphere: Insights From Atmospheric Tomography (ATom), J. Geophys. Res.-Atmos., 125, 1–17, https://doi.org/10.1029/2019JD031685, 2020. 5. Carslaw, N., Creasey, D. J., Heard, D. E., Lewis, A. C., McQuaid, J. B.,
Pilling, M. J., Monks, P. S., Bandy, B. J., and Penkett, S. A.: Modeling OH,
HO2, and RO2 radicals in the marine boundary layer: 1. Model
construction and comparison with field measurements, J. Geophys. Res., 104,
30241–30255, https://doi.org/10.1029/1999JD900783, 1999.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|