A Review of the Direct Measurement of Total OH Reactivity: Ambient Air and Vehicular Emission

Author:

Yang Xinping12ORCID

Affiliation:

1. State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China

2. Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China

Abstract

Total OH reactivity, an index utilized to evaluate the overall effect of atmospheric reactive species on hydroxyl radicals, has been assessed over the past half century, particularly in ambient air. The direct measurement of OH reactivity for vehicular sources has also been conducted, further enhancing our understanding of chemical compounds and processes in source emissions. However, the current summary on OH reactivity dominantly focuses on ambient, and the review of OH reactivity measurements and characteristics for vehicular sources was lacking. Herein, we comprehensively reviewed and compared the measurement techniques, values of total OH reactivity, reactive chemical species, and missing OH reactivity for ambient air and vehicular sources involving exhaust and evaporation. The OH reactivity values for ambient air are comparable to those for evaporative emission (around 0–102 s−1), whereas they are all lower by 2–3 orders of magnitude than exhaust emission. In areas dominated by anthropogenic emissions, inorganic reactivity dominates the OH reactivity, while in biogenic-dominated areas, organic reactivity is the main contributor. For vehicular sources, inorganic reactivity dominates the calculated OH reactivity for exhaust emissions, while volatile organic compound reactivity (especially alkene reactivity) can almost explain all the calculated OH reactivity for evaporative emissions. The missing reactivity for ambient air and vehicular emission might derive from unmeasured, even unknown, organic species. We finally discussed possible new directions for future studies of total OH reactivity.

Funder

National Natural Science Foundation of China

Budget Surplus of Central Financial Science and Technology Plan

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unclassical Radical Generation Mechanisms in the Troposphere: A Review;Environmental Science & Technology;2024-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3