Exploring atmospheric free-radical chemistry in China: the self-cleansing capacity and the formation of secondary air pollution

Author:

Lu Keding1ORCID,Guo Song1,Tan Zhaofeng1,Wang Haichao1,Shang Dongjie1,Liu Yuhan1,Li Xin1,Wu Zhijun1,Hu Min1,Zhang Yuanhang12

Affiliation:

1. State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China

2. CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Xiamen 361021, China

Abstract

Abstract Since 1971, it has been known that the atmospheric free radicals play a pivotal role in maintaining the oxidizing power of the troposphere. The existence of the oxidizing power is an important feature of the troposphere to remove primary air pollutants emitted from human beings as well as those from the biosphere. Nevertheless, serious secondary air-pollution incidents can take place due to fast oxidation of the primary pollutants. Elucidating the atmospheric free-radical chemistry is a demanding task in the field of atmospheric chemistry worldwide, which includes two kinds of work: first, the setup of reliable radical detection systems; second, integrated field studies that enable closure studies on the sources and sinks of targeted radicals such as OH and NO3. In this review, we try to review the Chinese efforts to explore the atmospheric free-radical chemistry in such chemical complex environments and the possible link of this fast gas-phase oxidation with the fast formation of secondary air pollution in the city-cluster areas in China.

Funder

Technology Research and Development Program of the Ministry of Science and Technology of China

National Natural Science Foundation of China

Chinese Academy of Sciences

National research fund

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3