OH, HO2, and RO2 radical chemistry in a rural forest environment: measurements, model comparisons, and evidence of a missing radical sink

Author:

Bottorff BrandonORCID,Lew Michelle M.,Woo Youngjun,Rickly PamelaORCID,Rollings Matthew D.,Deming Benjamin,Anderson Daniel C.ORCID,Wood EzraORCID,Alwe Hariprasad D.,Millet Dylan B.ORCID,Weinheimer Andrew,Tyndall GeoffORCID,Ortega John,Dusanter Sebastien,Leonardis Thierry,Flynn James,Erickson Matt,Alvarez Sergio,Rivera-Rios Jean C.,Shutter Joshua D.ORCID,Keutsch Frank,Helmig Detlev,Wang WeiORCID,Allen Hannah M.,Slade Johnathan H.,Shepson Paul B.,Bertman Steven,Stevens Philip S.ORCID

Abstract

Abstract. The hydroxyl (OH), hydroperoxy (HO2), and organic peroxy (RO2) radicals play important roles in atmospheric chemistry. In the presence of nitrogen oxides (NOx), reactions between OH and volatile organic compounds (VOCs) can initiate a radical propagation cycle that leads to the production of ozone and secondary organic aerosols. Previous measurements of these radicals under low-NOx conditions in forested environments characterized by emissions of biogenic VOCs, including isoprene and monoterpenes, have shown discrepancies with modeled concentrations. During the summer of 2016, OH, HO2, and RO2 radical concentrations were measured as part of the Program for Research on Oxidants: Photochemistry, Emissions, and Transport – Atmospheric Measurements of Oxidants in Summer (PROPHET-AMOS) campaign in a midlatitude deciduous broadleaf forest. Measurements of OH and HO2 were made by laser-induced fluorescence–fluorescence assay by gas expansion (LIF-FAGE) techniques, and total peroxy radical (XO2) mixing ratios were measured by the Ethane CHemical AMPlifier (ECHAMP) instrument. Supporting measurements of photolysis frequencies, VOCs, NOx, O3, and meteorological data were used to constrain a zero-dimensional box model utilizing either the Regional Atmospheric Chemical Mechanism (RACM2) or the Master Chemical Mechanism (MCM). Model simulations tested the influence of HOx regeneration reactions within the isoprene oxidation scheme from the Leuven Isoprene Mechanism (LIM1). On average, the LIM1 models overestimated daytime maximum measurements by approximately 40 % for OH, 65 % for HO2, and more than a factor of 2 for XO2. Modeled XO2 mixing ratios were also significantly higher than measured at night. Addition of RO2 + RO2 accretion reactions for terpene-derived RO2 radicals to the model can partially explain the discrepancy between measurements and modeled peroxy radical concentrations at night but cannot explain the daytime discrepancies when OH reactivity is dominated by isoprene. The models also overestimated measured concentrations of isoprene-derived hydroxyhydroperoxides (ISOPOOH) by a factor of 10 during the daytime, consistent with the model overestimation of peroxy radical concentrations. Constraining the model to the measured concentration of peroxy radicals improves the agreement with the measured ISOPOOH concentrations, suggesting that the measured radical concentrations are more consistent with the measured ISOPOOH concentrations. These results suggest that the models may be missing an important daytime radical sink and could be overestimating the rate of ozone and secondary product formation in this forest.

Funder

National Science Foundation

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3