Changes in global air pollutant emissions during the COVID-19 pandemic: a dataset for atmospheric modeling

Author:

Doumbia Thierno,Granier Claire,Elguindi Nellie,Bouarar Idir,Darras Sabine,Brasseur Guy,Gaubert BenjaminORCID,Liu Yiming,Shi Xiaoqin,Stavrakou Trissevgeni,Tilmes SimoneORCID,Lacey ForrestORCID,Deroubaix AdrienORCID,Wang TaoORCID

Abstract

Abstract. In order to fight the spread of the global COVID-19 pandemic, most of the world's countries have taken control measures such as lockdowns during a few weeks to a few months. These lockdowns had significant impacts on economic and personal activities in many countries. Several studies using satellite and surface observations have reported important changes in the spatial and temporal distributions of atmospheric pollutants and greenhouse gases. Global and regional chemistry-transport model studies are being performed in order to analyze the impact of these lockdowns on the distribution of atmospheric compounds. These modeling studies aim at evaluating the impact of the regional lockdowns at the global scale. In order to provide input for the global and regional model simulations, a dataset providing adjustment factors (AFs) that can easily be applied to current global and regional emission inventories has been developed. This dataset provides, for the January–August 2020 period, gridded AFs at a 0.1×0.1 latitude–longitude degree resolution on a daily or monthly basis for the transportation (road, air and ship traffic), power generation, industry and residential sectors. The quantification of AFs is based on activity data collected from different databases and previously published studies. A range of AFs are provided at each grid point for model sensitivity studies. The emission AFs developed in this study are applied to the CAMS global inventory (CAMS-GLOB-ANT_v4.2_R1.1), and the changes in emissions of the main pollutants are discussed for different regions of the world and the first 6 months of 2020. Maximum decreases in the total emissions are found in February in eastern China, with an average reduction of 20 %–30 % in NOx, NMVOCs (non-methane volatile organic compounds) and SO2 relative to the reference emissions. In the other regions, the maximum changes occur in April, with average reductions of 20 %–30 % for NOx, NMVOCs and CO in Europe and North America and larger decreases (30 %–50 %) in South America. In India and African regions, NOx and NMVOC emissions are reduced on average by 15 %–30 %. For the other species, the maximum reductions are generally less than 15 %, except in South America, where large decreases in CO and BC (black carbon) are estimated. As discussed in the paper, reductions vary highly across regions and sectors due to the differences in the duration of the lockdowns before partial or complete recovery. The dataset providing a range of AFs (average and average ± standard deviation) is called CONFORM (COvid-19 adjustmeNt Factors fOR eMissions) (https://doi.org/10.25326/88; Doumbia et al., 2020). It is distributed by the Emissions of atmospheric Compounds and Compilation of Ancillary Data (ECCAD) database (https://eccad.aeris-data.fr/, last access: 23 August 2021).

Funder

Horizon 2020

Research Grants Council, University Grants Committee

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference36 articles.

1. Barré, J., Petetin, H., Colette, A., Guevara, M., Peuch, V.-H., Rouil, L., Engelen, R., Inness, A., Flemming, J., Pérez García-Pando, C., Bowdalo, D., Meleux, F., Geels, C., Christensen, J. H., Gauss, M., Benedictow, A., Tsyro, S., Friese, E., Struzewska, J., Kaminski, J. W., Douros, J., Timmermans, R., Robertson, L., Adani, M., Jorba, O., Joly, M., and Kouznetsov, R.: Estimating lockdown-induced European NO2 changes using satellite and surface observations and air quality models, Atmos. Chem. Phys., 21, 7373–7394, https://doi.org/10.5194/acp-21-7373-2021, 2021.

2. Bauwens, M., Compernolle, S., Stavrakou, T., Müller, J.-F., van Gent, J., Eskes, H., Levelt, P. F., van der A, R., Veefkind, J. P., Vlietinck, J., Yu, H., and Zehner, C.: Impact of coronavirus outbreak on NO2 pollution assessed using TROPOMI and OMI observations, Geophys. Res. Lett., 47, e2020GL087978, https://doi.org/10.1029/2020GL087978, 2020.

3. Biswal, A., Singh, V., Singh, S., Kesarkar, A. P., Ravindra, K., Sokhi, R. S., Chipperfield, M. P., Dhomse, S. S., Pope, R. J., Singh, T., and Mor, S.: COVID-19 lockdown-induced changes in NO2 levels across India observed by multi-satellite and surface observations, Atmos. Chem. Phys., 21, 5235–5251, https://doi.org/10.5194/acp-21-5235-2021, 2021.

4. Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., van Aardenne, J. A., Monni, S., Doering, U., Olivier, J. G. J., Pagliari, V., and Janssens-Maenhout, G.: Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2, Earth Syst. Sci. Data, 10, 1987–2013, https://doi.org/10.5194/essd-10-1987-2018, 2018.

5. Diamond, M. S. and Wood, R.: Limited Regional Aerosol and Cloud Microphysical Changes Despite Unprecedented Decline in Nitrogen Oxide Pollution During the February 2020 COVID-19 Shutdown in China, Geophys. Res. Lett., 47, e2020GL088913, https://doi.org/10.1029/2020GL088913, 2020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3